IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Avoiding carbon lock-in: Policy options for advancing structural change

Listed author(s):
  • Mattauch, Linus
  • Creutzig, Felix
  • Edenhofer, Ottmar

An obstacle for the transformation to a low-carbon economy is the carbon lock-in: fossil fuel-based (“dirty”) technologies dominate the market although their carbon-free (“clean”) alternatives are dynamically more efficient. We study the interaction of learning-by-doing spillovers with the substitution elasticity between a clean and a dirty sector to evaluate the robustness of policies averting the carbon lock-in. We find that the substitution possibilities between the two sectors have an ambivalent effect: although a high substitution elasticity requires less aggressive mitigation policies than a low one, it creates a greater welfare loss through the lock-in in the absence of regulation. The socially optimal policy response consists of a permanent carbon tax as well as a learning subsidy for clean technologies. We thus indicate that the policy implications of (Acemoglu, D., Aghion, P., Bursztyn, L., Hemous, D., 2012. The Environment and Directed Technical Change. American Economic Review 120 (1): 131–166), calling for merely temporary interventions based on the mechanism of directed technical change in the same setting, are limited in scope. Our results also highlight that infrastructure provision is crucial to facilitate the low-carbon transformation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0264999315001467
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Economic Modelling.

Volume (Year): 50 (2015)
Issue (Month): C ()
Pages: 49-63

as
in new window

Handle: RePEc:eee:ecmode:v:50:y:2015:i:c:p:49-63
DOI: 10.1016/j.econmod.2015.06.002
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/30411

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
  2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
  3. Mirrlees, J. A. & Stern, N. H., 1972. "Fairly good plans," Journal of Economic Theory, Elsevier, vol. 4(2), pages 268-288, April.
  4. Pottier, Antonin & Hourcade, Jean-Charles & Espagne, Etienne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Energy Economics, Elsevier, vol. 42(C), pages 213-218.
  5. Daron Acemoglu, 2002. "Directed Technical Change," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 781-809.
  6. Page, Scott E., 2006. "Path Dependence," Quarterly Journal of Political Science, now publishers, vol. 1(1), pages 87-115, January.
  7. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
  8. Pottier, Antonin & Hourcade, Jean-Charles & Espagne, Etienne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Energy Economics, Elsevier, vol. 42(C), pages 213-218.
  9. Andersen, Poul H. & Mathews, John A. & Rask, Morten, 2009. "Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2481-2486, July.
  10. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
  11. Edenhofer, Ottmar & Kalkuhl, Matthias, 2011. "When do increasing carbon taxes accelerate global warming? A note on the green paradox," Energy Policy, Elsevier, vol. 39(4), pages 2208-2212, April.
  12. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
  13. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
  14. Kenneth J. Arrow, 1962. "The Economic Implications of Learning by Doing," Review of Economic Studies, Oxford University Press, vol. 29(3), pages 155-173.
  15. repec:hal:journl:hal-01111105 is not listed on IDEAS
  16. Mads Greaker & Tom-Reiel Heggedal, 2012. "A Comment on the Environment and Directed Technical Change," Discussion Papers 713, Statistics Norway, Research Department.
  17. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
  18. Cassou, Steven P. & Hamilton, Stephen F., 2004. "The transition from dirty to clean industries: optimal fiscal policy and the environmental Kuznets curve," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1050-1077, November.
  19. Jean-Charles Hourcade & Antonin Pottier & Etienne Espagne, 2011. "The Environment and Directed Technical Change: Comment," Working Papers 2011.95, Fondazione Eni Enrico Mattei.
  20. David Anthoff & Richard Tol, 2009. "The Impact of Climate Change on the Balanced Growth Equivalent: An Application of FUND," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 351-367, July.
  21. Armon Rezai & Duncan Foley & Lance Taylor, 2012. "Global warming and economic externalities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 49(2), pages 329-351, February.
  22. Frederick van der Ploeg, 2013. "Cumulative Carbon Emissions and the Green Paradox," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 281-300, June.
  23. Frederick Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 283-311, 02.
  24. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, Open Access Journal, vol. 5(2), pages 1-32, February.
  25. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
  26. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
  27. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
  28. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
  29. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:50:y:2015:i:c:p:49-63. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.