IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01018479.html

Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy

Author

Listed:
  • Antonin Pottier

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique)

  • Jean Charles Hourcade

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique)

  • Etienne Espagne

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper discusses attempts to represent the role of R&D in the transition towards a low carbon economy through models with no meaningful granularity to inform the studied phenomenon. By means of a critical analysis of (Acemoglu et al., 2012), we show that the advantage of these models, their analytical tractability, does not make up for their disadvantages, lack of control over policy implications and questionable numerical results. On the one hand, a comprehensive analysis of the results of Acemoglu et al. (2012) shows that even research subsidies do not pave the way for ambitious climate policies with low transitory costs, thus contradicting their policy message. On the other hand, critical parameters such as the elasticity of substitution between clean and dirty technologies, carbon sinks, or the productivity of researchers are not in accordance with existing scientific knowledge. We show that using more realistic parameters leads to even more pessimistic conclusions and that their model provides no leeway for overcoming them. We suggest that a too highly aggregated model can only describe an incorporeal economy and comes to a deadlock. We propose a more promising route for economic research in order to break this deadlock.

Suggested Citation

  • Antonin Pottier & Jean Charles Hourcade & Etienne Espagne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Post-Print hal-01018479, HAL.
  • Handle: RePEc:hal:journl:hal-01018479
    DOI: 10.1016/j.eneco.2013.12.003
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter K. Kruse-Andersen, 2016. "Directed Technical Change and Economic Growth Effects of Environmental Policy," Discussion Papers 16-06, University of Copenhagen. Department of Economics.
    2. Emeline Bezin, 2019. "The economics of Green consumption, cultural transmission and sustainable technological change," PSE-Ecole d'économie de Paris (Postprint) halshs-02087970, HAL.
    3. Michael Grubb & Alexandra Poncia & Paul Drummond & Karsten Neuhoff & Jean-Charles Hourcade, 2023. "Policy complementarity and the paradox of carbon pricing," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 39(4), pages 711-730.
    4. Bezin, Emeline, 2019. "The economics of green consumption, cultural transmission and sustainable technological change," Journal of Economic Theory, Elsevier, vol. 181(C), pages 497-546.
    5. Yang, Jun & Yang, Dingjian & Cheng, Jixin, 2024. "The non-rivalry of data, directed technical change and the environment: A theoretical study incorporating data as a production factor," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 417-448.
    6. Etienne Espagne, 2018. "Money, Finance and Climate: The Elusive Quest for a Truly Integrated Assessment Model," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 60(1), pages 131-143, March.
    7. Catalano,Michele & Forni,Lorenzo, 2022. "Fiscal Policies for a Sustainable Recovery and a Green Transformation," Policy Research Working Paper Series 9799, The World Bank.
    8. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    9. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    10. Emeline Bezin, 2019. "The economics of Green consumption, cultural transmission and sustainable technological change," Post-Print halshs-02087970, HAL.
    11. Chen, Xiaohong & Mao, Yue & Cheng, Jixin & Wei, Ping & Li, Xiaoming, 2024. "Green financial policy, technological advancement reversal, assessment of emission reduction effects," Energy Economics, Elsevier, vol. 136(C).
    12. Wiskich, Anthony, 2024. "A carbon tax versus clean subsidies: Optimal and suboptimal policies for the clean transition," Energy Economics, Elsevier, vol. 132(C).
    13. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.
    14. Etienne Espagne, 2016. "Climate Finance at COP21 and After: Lessons Learnt," CEPII Policy Brief 2016-09, CEPII research center.
    15. Grubb, Michael & Lange, Rutger-Jan & Cerkez, Nicolas & Sognnaes, Ida & Wieners, Claudia & Salas, Pablo, 2024. "Dynamic determinants of optimal global climate policy," Structural Change and Economic Dynamics, Elsevier, vol. 71(C), pages 490-508.
    16. Kostas Fragkiadakis & Panagiotis Fragkos & Leonidas Paroussos, 2020. "Low-Carbon R&D Can Boost EU Growth and Competitiveness," Energies, MDPI, vol. 13(19), pages 1-29, October.
    17. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    18. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    19. Lennox, James A. & Witajewski-Baltvilks, Jan, 2017. "Directed technical change with capital-embodied technologies: Implications for climate policy," Energy Economics, Elsevier, vol. 67(C), pages 400-409.
    20. Fabian Stöckl & Alexander Zerrahn, 2023. "Substituting Clean for Dirty Energy: A Bottom-Up Analysis," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 819-863.
    21. Tunç Durmaz & Fred Schroyen, 2020. "Evaluating Carbon Capture And Storage In A Climate Model With Endogenous Technical Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-47, February.
    22. Wiskich, Anthony, 2021. "A comment on innovation with multiple equilibria and "The environment and directed technical change"," Energy Economics, Elsevier, vol. 94(C).
    23. Liu, Jianjun & Liu, Mengting & Liang, Dapeng, 2025. "Research on the impact of digital technology application in industry on industrial carbon dioxide emissions: Evidence from China," Energy Economics, Elsevier, vol. 141(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • B4 - Schools of Economic Thought and Methodology - - Economic Methodology

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01018479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.