IDEAS home Printed from https://ideas.repec.org/p/kud/kuiedp/1606.html
   My bibliography  Save this paper

Directed Technical Change and Economic Growth Effects of Environmental Policy

Author

Listed:
  • Peter K. Kruse-Andersen

    (Department of Economics, University of Copenhagen)

Abstract

A Schumpeterian growth model is developed to investigate how environmental policy affects economic growth when environmental policy also affects the direction of technical change. In contrast to previous models, production and pollution abatement technologies are embodied in separate intermediate good types. A set of stylized facts related to pollution emission, environmental policy, and pollution abatement expenditures is presented, and it is shown that the developed model is consistent with these stylized facts. It is shown analytically that a tightening of the environmental policy unambiguously directs research efforts toward pollution abatement technologies and away from production technologies. This directed technical change reduces economic growth and pollution emission growth. Simulation results indicate that even large environmental policy reforms have small economic growth effects. However, these economic growth effects have relatively large welfare effects which suggest that static models and exogenus growth models leave out an important welfare effect of environmental policy.

Suggested Citation

  • Peter K. Kruse-Andersen, 2016. "Directed Technical Change and Economic Growth Effects of Environmental Policy," Discussion Papers 16-06, University of Copenhagen. Department of Economics.
  • Handle: RePEc:kud:kuiedp:1606
    as

    Download full text from publisher

    File URL: http://www.econ.ku.dk/english/research/publications/wp/dp_2016/1606.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanna, Rema & Oliva, Paulina, 2015. "The effect of pollution on labor supply: Evidence from a natural experiment in Mexico City," Journal of Public Economics, Elsevier, vol. 122(C), pages 68-79.
    2. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    3. Pottier, Antonin & Hourcade, Jean-Charles & Espagne, Etienne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Energy Economics, Elsevier, vol. 42(C), pages 213-218.
    4. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    5. Antonin Pottier & J.C Hourcade & E. Espagne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Post-Print hal-01523021, HAL.
    6. Nick Johnstone & Ivan Haščič & Julie Poirier & Marion Hemar & Christian Michel, 2012. "Environmental policy stringency and technological innovation: evidence from survey data and patent counts," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2157-2170, June.
    7. Jones, Charles I., 2005. "Growth and Ideas," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 16, pages 1063-1111, Elsevier.
    8. Groth, Christian & Ricci, Francesco, 2011. "Optimal growth when environmental quality is a research asset," Research in Economics, Elsevier, vol. 65(4), pages 340-352, December.
    9. repec:hal:journl:hal-01111105 is not listed on IDEAS
    10. Lucas Bretschger & Sjak Smulders, 2007. "Sustainable Resource Use and Economic Dynamics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 1-13, January.
    11. Mohtadi, Hamid, 1996. "Environment, growth, and optimal policy design," Journal of Public Economics, Elsevier, vol. 63(1), pages 119-140, December.
    12. Stern, David I., 2014. "The Environmental Kuznets Curve: A Primer," Working Papers 249424, Australian National University, Centre for Climate Economics & Policy.
    13. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    14. Frank Hettich, 1998. "Growth effects of a revenue-neutral environmental tax reform," Journal of Economics, Springer, vol. 67(3), pages 287-316, October.
    15. Philippe Aghion & Steven Durlauf (ed.), 2005. "Handbook of Economic Growth," Handbook of Economic Growth, Elsevier, edition 1, volume 1, number 1.
    16. Francesco Ricci, 2007. "Environmental policy and growth when inputs are differentiated in pollution intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(3), pages 285-310, November.
    17. Hart, Rob, 2004. "Growth, environment and innovation--a model with production vintages and environmentally oriented research," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1078-1098, November.
    18. Saint-Paul, Gilles, 2002. "Environmental Policy and Directed Innovation in a Schumpeterian Growth Model," IDEI Working Papers 153, Institut d'Économie Industrielle (IDEI), Toulouse.
    19. Masakatsu Okubo, 2011. "The Intertemporal Elasticity of Substitution: An Analysis Based on Japanese Data," Economica, London School of Economics and Political Science, vol. 78(310), pages 367-390, April.
    20. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    21. Tomáš Havránek, 2015. "Measuring Intertemporal Substitution: The Importance Of Method Choices And Selective Reporting," Journal of the European Economic Association, European Economic Association, vol. 13(6), pages 1180-1204, December.
    22. Nick Johnstone & Julien Labonne, 2007. "Environmental policy, management and R&D," OECD Economic Studies, OECD Publishing, vol. 2006(1), pages 169-203.
    23. Poul Schou, 2002. "Pollution Externalities in a Model of Endogenous Fertility and Growth," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 9(6), pages 709-725, November.
    24. Stokey, Nancy L, 1998. "Are There Limits to Growth?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(1), pages 1-31, February.
    25. Søren Nielsen & Lars Pedersen & Peter Sørensen, 1995. "Environmental policy, pollution, unemployment, and endogenous growth," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 2(2), pages 185-205, August.
    26. Peter Howitt, 1999. "Steady Endogenous Growth with Population and R & D Inputs Growing," Journal of Political Economy, University of Chicago Press, vol. 107(4), pages 715-730, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karydas, Christos & Zhang, Lin, 2019. "Green tax reform, endogenous innovation and the growth dividend," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 158-181.
    2. Kruse-Andersen, Peter Kjær, 2023. "Directed technical change, environmental sustainability, and population growth," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    2. Kruse-Andersen, Peter Kjær, 2023. "Directed technical change, environmental sustainability, and population growth," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    3. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    4. Francesco Ricci, 2007. "Environmental policy and growth when inputs are differentiated in pollution intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(3), pages 285-310, November.
    5. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    6. Smulders, Sjak & Withagen, Cees, 2012. "Green growth -- lessons from growth theory," Policy Research Working Paper Series 6230, The World Bank.
    7. Oscar Afonso & Ana Catarina Afonso, 2015. "Endogenous Growth Effects of Environmental Policies," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(5), pages 607-629, December.
    8. Afonso, Oscar, 2023. "Fiscal and monetary effects on environmental quality, growth, and welfare," Research in Economics, Elsevier, vol. 77(1), pages 202-219.
    9. Richard M. H. Suen, 2013. "Research Policy and U.S. Economic Growth," Working papers 2013-18, University of Connecticut, Department of Economics.
    10. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    11. Sener, Fuat, 2008. "R&D policies, endogenous growth and scale effects," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3895-3916, December.
    12. Mathias Thoenig & Thierry Verdier, 2010. "A macroeconomic perspective on Knowledge Management," Journal of Economic Growth, Springer, vol. 15(1), pages 33-63, March.
    13. Dean Scrimgeour, 2015. "Dynamic Scoring in a Romer‐Style Economy," Southern Economic Journal, John Wiley & Sons, vol. 81(3), pages 697-723, January.
    14. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," TSE Working Papers 14-469, Toulouse School of Economics (TSE).
    15. Ryo Horii & Masako Ikefuji, 2014. "Environment and Growth," DSSR Discussion Papers 21, Graduate School of Economics and Management, Tohoku University.
    16. Mónica Meireles & Isabel Soares & Óscar Afonso, 2010. "Economic Growth, Ecological Technology and Public Intervention," FEP Working Papers 378, Universidade do Porto, Faculdade de Economia do Porto.
    17. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    18. Cozzi, Guido & Galli, Silvia, 2011. "Privatization of Knowledge: Did the U.S. Get It Right? (New Version)," MPRA Paper 29710, University Library of Munich, Germany.
    19. Chen, Jhy-hwa & Shieh, Jhy-yuan & Chang, Juin-jen & Lai, Ching-chong, 2009. "Growth, welfare and transitional dynamics in an endogenously growing economy with abatement labor," Journal of Macroeconomics, Elsevier, vol. 31(3), pages 423-437, September.
    20. Elie Gray & André Grimaud, 2016. "The Lindahl equilibrium in Schumpeterian growth models," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 101-142, March.

    More about this item

    Keywords

    Directed technical change; endogenous growth; pollution; environmental policy; Schumpeterian growth model;
    All these keywords.

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:1606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Hoffmann (email available below). General contact details of provider: https://edirc.repec.org/data/okokudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.