IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/27914.html
   My bibliography  Save this paper

The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives

Author

Listed:
  • Gray, Elie
  • Grimaud, André

Abstract

What is the social value of innovations in Schumpeterian growth models? This issue is tackled by introducing the concept of Lindahl equilibrium in a standard endogenous growth model with vertical innovations which is extended by explicitly considering knowledge diffusion. Assuming that knowledge diffuses on a Salop (1979) circle allows us to formalize the creation of the pools of knowledge in which research and development (R&D) activities draw from to produce innovations. Within this model, we compare two equilibria. The standard Schumpeterian equilibrium à la Aghion & Howitt (1992) is mainly characterized by incomplete markets since knowledge is not priced. It provides the usual private value of innovations. The Lindahl equilibrium is a benchmark enabling us to compute the system of prices that sustains the first-best social optimum, and thus to define and to determine analytically the social value of innovations. It provides a suitable methodology for revisiting issues involving the presence of knowledge, often studied in the industrial organization and endogenous growth literatures. This comparison sheds a new light on the consequences of non-rivalry of knowledge and of market incompleteness on innovators’ behavior in the Schumpeterian equilibrium. We notably revisit the issues of Pareto sub-optimality and of R&D incentives in presence of cumulative innovations. Basically, the key externality triggered by market incompleteness implies that knowledge creation is indirectly funded by means of intellectual property rights on rival goods embodying knowledge. Therefore, because the private value of innovations differs from the social one, innovators are not given the optimal incentives.

Suggested Citation

  • Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," TSE Working Papers 14-469, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:27914
    as

    Download full text from publisher

    File URL: http://www2.toulouse.inra.fr/lerna/travaux/cahiers2014/14.02.403.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Aghion & Diego Comin & Peter Howitt & Isabel Tecu, 2016. "When Does Domestic Savings Matter for Economic Growth?," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 64(3), pages 381-407, August.
    2. Cozzi, Guido & Giordani, Paolo E. & Zamparelli, Luca, 2007. "The refoundation of the symmetric equilibrium in Schumpeterian growth models," Journal of Economic Theory, Elsevier, vol. 136(1), pages 788-797, September.
    3. Jerry R. Green & Suzanne Scotchmer, 1995. "On the Division of Profit in Sequential Innovation," RAND Journal of Economics, The RAND Corporation, vol. 26(1), pages 20-33, Spring.
    4. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    5. Benassy, Jean-Pascal, 1998. "Is there always too little research in endogenous growth with expanding product variety?," European Economic Review, Elsevier, vol. 42(1), pages 61-69, January.
    6. Charles I. Jones, 1999. "Growth: With or Without Scale Effects?," American Economic Review, American Economic Association, vol. 89(2), pages 139-144, May.
    7. Jones, Charles I & Williams, John C, 2000. "Too Much of a Good Thing? The Economics of Investment in R&D," Journal of Economic Growth, Springer, vol. 5(1), pages 65-85, March.
    8. Bronwyn H. Hall, 2004. "Innovation and Diffusion," NBER Working Papers 10212, National Bureau of Economic Research, Inc.
    9. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(1), pages 43-61.
    10. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    11. Jones, Charles I., 2005. "Growth and Ideas," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 16, pages 1063-1111, Elsevier.
    12. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    13. Peretto, Pietro F, 1998. "Technological Change and Population Growth," Journal of Economic Growth, Springer, vol. 3(4), pages 283-311, December.
    14. Daron Acemoglu & Ufuk Akcigit, 2012. "Intellectual Property Rights Policy, Competition And Innovation," Journal of the European Economic Association, European Economic Association, vol. 10(1), pages 1-42, February.
    15. Alvarez-Pelaez, Maria J. & Groth, Christian, 2005. "Too little or too much R&D?," European Economic Review, Elsevier, vol. 49(2), pages 437-456, February.
    16. Philippe Aghion & Peter Howitt, 2009. "The Economics of Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012634, April.
    17. Li, Chol-Won, 2002. "Growth and scale effects: the role of knowledge spillovers," Economics Letters, Elsevier, vol. 74(2), pages 177-185, January.
    18. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    19. Steven C. Salop, 1979. "Monopolistic Competition with Outside Goods," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 141-156, Spring.
    20. Bronwyn H. Hall & Nathan Rosenberg (ed.), 2010. "Handbook of the Economics of Innovation," Handbook of the Economics of Innovation, Elsevier, edition 1, volume 1, number 1.
    21. Pohjola, Matti (ed.), 2001. "Information Technology, Productivity, and Economic Growth: International Evidence and Implications for Economic Development," OUP Catalogue, Oxford University Press, number 9780199243983.
    22. Segerstrom, Paul S, 2000. "The Long-Run Growth Effects of R&D Subsidies," Journal of Economic Growth, Springer, vol. 5(3), pages 277-305, September.
    23. James Bessen & Eric Maskin, 2009. "Sequential innovation, patents, and imitation," RAND Journal of Economics, RAND Corporation, vol. 40(4), pages 611-635, December.
    24. Chol-Won Li, 2003. "Endogenous Growth Without Scale Effects: Comment," American Economic Review, American Economic Association, vol. 93(3), pages 1009-1017, June.
    25. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    26. Philippe Aghion & Steven Durlauf (ed.), 2005. "Handbook of Economic Growth," Handbook of Economic Growth, Elsevier, edition 1, volume 1, number 1.
    27. Peretto, Pietro F., 2007. "Corporate taxes, growth and welfare in a Schumpeterian economy," Journal of Economic Theory, Elsevier, vol. 137(1), pages 353-382, November.
    28. Chu, Angus C. & Cozzi, Guido & Galli, Silvia, 2012. "Does intellectual monopoly stimulate or stifle innovation?," European Economic Review, Elsevier, vol. 56(4), pages 727-746.
    29. Étienne Chantrel & Andre Grimaud & Frederic Tournemaine, 2012. "Pricing Knowledge and Funding Research of New Technology Sectors in a Growth Model," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(3), pages 493-520, June.
    30. Jean Tirole, 1988. "The Theory of Industrial Organization," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262200716, April.
    31. Pietro Peretto & Sjak Smulders, 2002. "Technological Distance, Growth And Scale Effects," Economic Journal, Royal Economic Society, vol. 112(481), pages 603-624, July.
    32. Alwyn Young, 1998. "Growth without Scale Effects," Journal of Political Economy, University of Chicago Press, vol. 106(1), pages 41-63, February.
    33. Garner, Phillip, 2010. "A note on endogenous growth and scale effects," Economics Letters, Elsevier, vol. 106(2), pages 98-100, February.
    34. Christopher Laincz & Pietro Peretto, 2006. "Scale effects in endogenous growth theory: an error of aggregation not specification," Journal of Economic Growth, Springer, vol. 11(3), pages 263-288, September.
    35. Segerstrom, Paul S, 1998. "Endogenous Growth without Scale Effects," American Economic Review, American Economic Association, vol. 88(5), pages 1290-1310, December.
    36. Manning, Richard & Markusen, James R & McMillan, John, 1985. "Paying for Public Inputs," American Economic Review, American Economic Association, vol. 75(1), pages 235-238, March.
    37. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    38. Peretto, Pietro F., 1999. "Cost reduction, entry, and the interdependence of market structure and economic growth," Journal of Monetary Economics, Elsevier, vol. 43(1), pages 173-195, February.
    39. Joonkyung Ha & Peter Howitt, 2007. "Accounting for Trends in Productivity and R&D: A Schumpeterian Critique of Semi-Endogenous Growth Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(4), pages 733-774, June.
    40. Milleron, Jean-Claude, 1972. "Theory of value with public goods: A survey article," Journal of Economic Theory, Elsevier, vol. 5(3), pages 419-477, December.
    41. Samuel S. Kortum, 1997. "Research, Patenting, and Technological Change," Econometrica, Econometric Society, vol. 65(6), pages 1389-1420, November.
    42. Peter Howitt, 1999. "Steady Endogenous Growth with Population and R & D Inputs Growing," Journal of Political Economy, University of Chicago Press, vol. 107(4), pages 715-730, August.
    43. Chari, V V & Hopenhayn, Hugo, 1991. "Vintage Human Capital, Growth, and the Diffusion of New Technology," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1142-1165, December.
    44. Dinopoulos, Elias & Thompson, Peter, 1998. "Schumpeterian Growth without Scale Effects," Journal of Economic Growth, Springer, vol. 3(4), pages 313-335, December.
    45. Suzanne Scotchmer, 1991. "Standing on the Shoulders of Giants: Cumulative Research and the Patent Law," Journal of Economic Perspectives, American Economic Association, vol. 5(1), pages 29-41, Winter.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," IDEI Working Papers 821, Institut d'Économie Industrielle (IDEI), Toulouse.
    2. Elie Gray & André Grimaud, 2014. "The Lindahl Equilibrium in Schumpeterian Growth Models: Knowledge Diffusion, Social Value of Innovations and Optimal R&D Incentives," CESifo Working Paper Series 4678, CESifo.
    3. Elie Gray & André Grimaud, 2016. "The Lindahl equilibrium in Schumpeterian growth models," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 101-142, March.
    4. Gray, Elie & Grimaud, André, 2016. "Using the Salop Circle to Study Scale Effects in Schumpeterian Growth Models: Why Inter-sectoral Knowledge Diffusion Matters," TSE Working Papers 16-676, Toulouse School of Economics (TSE).
    5. Elie Gray & André Grimaud, 2016. "Using the Salop Circle to Study Scale Effects in Schumpeterian Growth Models: Why Inter-sectoral Knowledge Diffusion Matters," CESifo Working Paper Series 6021, CESifo.
    6. Grimaud, André & Gray, Elie, 2024. "Inter-Sectoral Knowledge Diffusion and Scale Effects in Schumpeterian Growth Models," TSE Working Papers 24-1577, Toulouse School of Economics (TSE).
    7. Sener, Fuat, 2008. "R&D policies, endogenous growth and scale effects," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3895-3916, December.
    8. Minniti, Antonio & Venturini, Francesco, 2017. "The long-run growth effects of R&D policy," Research Policy, Elsevier, vol. 46(1), pages 316-326.
    9. Angus Chu & Guido Cozzi & Chih-Hsing Liao, 2013. "Endogenous fertility and human capital in a Schumpeterian growth model," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(1), pages 181-202, January.
    10. Richard M. H. Suen, 2013. "Research Policy and U.S. Economic Growth," Working papers 2013-18, University of Connecticut, Department of Economics.
    11. Guido Cozzi & Silvia Galli, 2014. "Sequential R&D and blocking patents in the dynamics of growth," Journal of Economic Growth, Springer, vol. 19(2), pages 183-219, June.
    12. Angus C. Chu & Yuichi Furukawa & Lei Ji, 2016. "Patents, R&D subsidies, and endogenous market structure in a schumpeterian economy," Southern Economic Journal, John Wiley & Sons, vol. 82(3), pages 809-825, January.
    13. Ruiyang Hu & Yibai Yang & Zhijie Zheng, 2023. "Effects of subsidies on growth and welfare in a quality‐ladder model with elastic labor," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(5), pages 1096-1137, October.
    14. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    15. Dean Scrimgeour, 2015. "Dynamic Scoring in a Romer‐Style Economy," Southern Economic Journal, John Wiley & Sons, vol. 81(3), pages 697-723, January.
    16. Dean Scrimgeour, 2015. "Dynamic Scoring in a Romer-Style Economy," Southern Economic Journal, Southern Economic Association, vol. 81(3), pages 697-723, January.
    17. repec:wly:soecon:v:81:3:y:2015:p:697-723 is not listed on IDEAS
    18. Guido Cozzi & Silvia Galli, 2009. "Upstream Innovation Protection: Common Law Evolution and the Dynamics of Wage Inequality," Working Papers 2009_20, Business School - Economics, University of Glasgow.
    19. Chu, Angus C. & Cozzi, Guido & Galli, Silvia, 2012. "Does intellectual monopoly stimulate or stifle innovation?," European Economic Review, Elsevier, vol. 56(4), pages 727-746.
    20. A. Minniti & F. Venturini, 2014. "R&D Policy and Schumpeterian Growth: Theory and Evidence," Working Papers wp945, Dipartimento Scienze Economiche, Universita' di Bologna.
    21. Steven Bond-Smith & Philip McCann & Les Oxley, 2018. "A regional model of endogenous growth without scale assumptions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(1), pages 5-35, January.

    More about this item

    Keywords

    Schumpeterian growth theory - Lindahl equilibrium - Social value of innovations - Pareto sub-optimality - Cumulative innovations - Knowledge spillovers;

    JEL classification:

    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:27914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.