IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v109y2021icp85-97.html
   My bibliography  Save this article

High-speed Rail's impact on airline demand and air carbon emissions in China

Author

Listed:
  • Strauss, Jack
  • Li, Hongchang
  • Cui, Jinli

Abstract

We construct an extensive data set comprising all air and high-speed rail (HSR) routes in China. We estimate that commercial air travel emits seven times the carbon emissions per passenger kilometer than HSR. Results demonstrate a strong link between air travel and air carbon emissions. Increases in China's HSR routes have contributed to significant and large negative impacts on air travel and accompanying air carbon emissions. Mode substitution from air travel to HSR has led to an 18% decline in air carbon emissions in recent years, saving the environment an annual 12 million metric tons in net carbon emissions. We determine that a $35 carbon tax could generate an additional decline of air carbon emission of 6 million tons and a net reduction of 5.3 million tons. Hence, to lower carbon emissions, policymakers can consider a carbon tax and transport policies to encourage a modal shift from air travel to HSR.

Suggested Citation

  • Strauss, Jack & Li, Hongchang & Cui, Jinli, 2021. "High-speed Rail's impact on airline demand and air carbon emissions in China," Transport Policy, Elsevier, vol. 109(C), pages 85-97.
  • Handle: RePEc:eee:trapol:v:109:y:2021:i:c:p:85-97
    DOI: 10.1016/j.tranpol.2021.05.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X21001633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2021.05.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2016. "Airlines’ reaction to high-speed rail entries: Empirical study of the Northeast Asian market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 532-557.
    2. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," ULB Institutional Repository 2013/152140, ULB -- Universite Libre de Bruxelles.
    3. Wang, Kun & Xia, Wenyi & Zhang, Anming, 2017. "Should China further expand its high-speed rail network? Consider the low-cost carrier factor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 105-120.
    4. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    5. Albalate, Daniel & Fageda, Xavier, 2016. "High speed rail and tourism: Empirical evidence from Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 174-185.
    6. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    7. Yang, Hangjun & Ma, Wenliang & Wang, Qiang & Wang, Kun & Zhang, Yahua, 2020. "Welfare implications for air passengers in China in the era of high-speed rail," Transport Policy, Elsevier, vol. 95(C), pages 1-13.
    8. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    9. Boon Liat Lee & Clevo Wilson & Carl A. Pasurka & Hidemichi Fujii & Shunsuke Managi, 2017. "Sources of airline productivity from carbon emissions: an analysis of operational performance under good and bad outputs," Journal of Productivity Analysis, Springer, vol. 47(3), pages 223-246, June.
    10. Chiara Criscuolo & Ralf Martin & Henry G. Overman & John Van Reenen, 2019. "Some Causal Effects of an Industrial Policy," American Economic Review, American Economic Association, vol. 109(1), pages 48-85, January.
    11. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, Decembrie.
    12. Gu, Hongyi & Wan, Yulai, 2020. "Can entry of high-speed rail increase air traffic? Price competition, travel time difference and catchment expansion," Transport Policy, Elsevier, vol. 97(C), pages 55-72.
    13. Wenyi Xia & Kun Wang & Anming Zhang, 2018. "Air Transport and High-speed Rail Interactions in China: Review on Impacts of Low-cost Carriers, Rail Speed, and Modal Integration," Advances in Airline Economics, in: Airline Economics in Asia, volume 7, pages 103-122, Emerald Group Publishing Limited.
    14. Hongchang Li & Jack Strauss & Lihong Liu, 2019. "A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint," Sustainability, MDPI, vol. 11(7), pages 1-24, April.
    15. Kyprianidis, Konstantinos G. & Dahlquist, Erik, 2017. "On the trade-off between aviation NOx and energy efficiency," Applied Energy, Elsevier, vol. 185(P2), pages 1506-1516.
    16. Xiaowen Fu & Tae H. Oum & Jia Yan, 2014. "An Analysis of Travel Demand in Japan's Intercity Market Empirical Estimation and Policy Simulation," Journal of Transport Economics and Policy, University of Bath, vol. 48(1), pages 97-113, January.
    17. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413.
    18. Chang, Yuan & Lei, Shuhua & Teng, Jianjian & Zhang, Jiangxue & Zhang, Lixiao & Xu, Xiao, 2019. "The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling," Energy, Elsevier, vol. 182(C), pages 1193-1201.
    19. Xia, Wenyi & Zhang, Anming, 2017. "Air and high-speed rail transport integration on profits and welfare: Effects of air-rail connecting time," Journal of Air Transport Management, Elsevier, vol. 65(C), pages 181-190.
    20. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    21. Kennedy, Peter E, 1981. "Estimation with Correctly Interpreted Dummy Variables in Semilogarithmic Equations [The Interpretation of Dummy Variables in Semilogarithmic Equations]," American Economic Review, American Economic Association, vol. 71(4), pages 801-801, September.
    22. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    23. Zhang, Rui & Johnson, Daniel & Zhao, Weiming & Nash, Chris, 2019. "Competition of airline and high-speed rail in terms of price and frequency: Empirical study from China," Transport Policy, Elsevier, vol. 78(C), pages 8-18.
    24. Chai, Jian & Zhou, Youhong & Zhou, Xiaoyang & Wang, Shouyang & Zhang, Zhe George & Liu, Zenghui, 2018. "Analysis on shock effect of China’s high-speed railway on aviation transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 35-44.
    25. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 720-742, November.
    26. Chen, Zhenhua, 2017. "Impacts of high-speed rail on domestic air transportation in China," Journal of Transport Geography, Elsevier, vol. 62(C), pages 184-196.
    27. Matsumoto, Hidenobu, 2004. "International urban systems and air passenger and cargo flows: some calculations," Journal of Air Transport Management, Elsevier, vol. 10(4), pages 239-247.
    28. McCallum, John, 1995. "National Borders Matter: Canada-U.S. Regional Trade Patterns," American Economic Review, American Economic Association, vol. 85(3), pages 615-623, June.
    29. Dong, Qichen & Chen, Fanglin & Chen, Zhongfei, 2020. "Airports and air pollutions: Empirical evidence from China," Transport Policy, Elsevier, vol. 99(C), pages 385-395.
    30. Zhang, Qiong & Yang, Hangjun & Wang, Qiang & Zhang, Anming & Zhang, Yahua, 2020. "Impact of high-speed rail on market concentration and Lerner index in China's airline market," Journal of Air Transport Management, Elsevier, vol. 83(C).
    31. Li, Hongchang & Strauss, Jack & Lu, Liu, 2019. "The impact of high-speed rail on civil aviation in China," Transport Policy, Elsevier, vol. 74(C), pages 187-200.
    32. David Card & Stefano DellaVigna, 2020. "What Do Editors Maximize? Evidence from Four Economics Journals," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 195-217, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongpei & Guan, Zhongyu & Zhang, Qian, 2023. "Railway opening and carbon emissions in distressed areas: Evidence from China's state-level poverty-stricken counties," Transport Policy, Elsevier, vol. 130(C), pages 55-67.
    2. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    3. Maung, Yun Shwe Yee & Douglas, Ian & Tan, David, 2022. "Identifying the drivers of profitable airline growth," Transport Policy, Elsevier, vol. 115(C), pages 275-285.
    4. Gu, Hongyi & Wan, Yulai, 2022. "Airline reactions to high-speed rail entry: Rail quality and market structure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 511-532.
    5. Xie, Jiemin & Zhan, Shuguang & Wong, S.C. & Wen, Keyu & Qiang, Lixia & Lo, S.M., 2022. "High-speed rail services for elderly passengers: Ticket-booking patterns and policy implications," Transport Policy, Elsevier, vol. 125(C), pages 96-106.
    6. Mariano Gallo & Rosa Anna La Rocca, 2022. "The Impact of High-Speed Rail Systems on Tourist Attractiveness in Italy: Regression Models and Numerical Results," Sustainability, MDPI, vol. 14(21), pages 1-33, October.
    7. Yuan, Zhiyi & Dong, Changgui & Ou, Xunmin, 2023. "The substitution effect of high-speed rail on civil aviation in China," Energy, Elsevier, vol. 263(PC).
    8. Li, Zongxin & Wang, Qingyu & Cai, Mengshan & Wong, Wing-Keung, 2023. "Impacts of high-speed rail on the industrial developments of non-central cities in China," Transport Policy, Elsevier, vol. 134(C), pages 203-216.
    9. Mingwei Li & Bingxue Shao & Xiasheng Shi, 2022. "Impact of High-Speed Rail on the Development Efficiency of Low-Carbon Tourism: A Case Study of an Agglomeration in China," Sustainability, MDPI, vol. 14(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    2. Wu, Shuping & Han, Dan, 2022. "Accessibility of high-speed rail (HSR) stations and HSR–air competition: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 262-284.
    3. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    4. Chen, Yilin & Yang, Hangjun & Wang, Kun & Guo, Lin, 2022. "Intercity network expansion by low-cost carrier or high-speed rail, from the environmental perspective," Journal of Air Transport Management, Elsevier, vol. 104(C).
    5. Wang, Yixiao & Sun, Luoyi & Teunter, Ruud H. & Wu, Jianhong & Hua, Guowei, 2020. "Effects of introducing low-cost high-speed rail on air-rail competition: Modelling and numerical analysis for Paris-Marseille," Transport Policy, Elsevier, vol. 99(C), pages 145-162.
    6. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    7. Li, Hongchang & Wang, Kun & Yu, Kemei & Zhang, Anming, 2020. "Are conventional train passengers underserved after entry of high-speed rail?-Evidence from Chinese intercity markets," Transport Policy, Elsevier, vol. 95(C), pages 1-9.
    8. Ma, Wenliang & Wang, Qiang & Yang, Hangjun & Zhang, Guoquan & Zhang, Yahua, 2020. "Understanding airline price dispersion in the presence of high-speed rail," Transport Policy, Elsevier, vol. 95(C), pages 93-102.
    9. Li, Hongchang & Strauss, Jack & Lu, Liu, 2019. "The impact of high-speed rail on civil aviation in China," Transport Policy, Elsevier, vol. 74(C), pages 187-200.
    10. Wang, Jiaoe & Huang, Jie & Jing, Yue, 2020. "Competition between high-speed trains and air travel in China: From a spatial to spatiotemporal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 62-78.
    11. Avogadro, Nicolò & Pels, Eric & Redondi, Renato, 2023. "Policy impacts on the propensity to travel by HSR in the Amsterdam – London market," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    12. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    13. Su, Min & Luan, Weixin & Fu, Xiaowen & Yang, Zaili & Zhang, Rui, 2020. "The competition effects of low-cost carriers and high-speed rail on the Chinese aviation market," Transport Policy, Elsevier, vol. 95(C), pages 37-46.
    14. Wang, Wei & Sun, Huijun & Wu, Jianjun, 2020. "How does the decision of high-speed rail operator affect social welfare? Considering competition between high-speed rail and air transport," Transport Policy, Elsevier, vol. 88(C), pages 1-15.
    15. Wang, Chunan & Jiang, Changmin & Zhang, Anming, 2021. "Effects of Airline Entry on High-Speed Rail," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 242-265.
    16. Mizutani, Jun & Sakai, Hiroki, 2023. "The effects of frequent flyer programs in the competition with high speed rail: A case study of air passenger preference in Japan," Journal of Air Transport Management, Elsevier, vol. 106(C).
    17. Gu, Hongyi & Wan, Yulai, 2022. "Airline reactions to high-speed rail entry: Rail quality and market structure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 511-532.
    18. Gu, Hongyi & Wan, Yulai, 2020. "Can entry of high-speed rail increase air traffic? Price competition, travel time difference and catchment expansion," Transport Policy, Elsevier, vol. 97(C), pages 55-72.
    19. Takebayashi, Mikio & Yamaguchi, Hiromichi, 2022. "Managing a multiple-gateway airport system with super high-speed rail," Journal of Air Transport Management, Elsevier, vol. 99(C).
    20. Yang, Hangjun & Ma, Wenliang & Wang, Qiang & Wang, Kun & Zhang, Yahua, 2020. "Welfare implications for air passengers in China in the era of high-speed rail," Transport Policy, Elsevier, vol. 95(C), pages 1-13.

    More about this item

    Keywords

    High-speed rail (HSR); Civil aviation; Carbon emission; Carbon Tax;
    All these keywords.

    JEL classification:

    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:109:y:2021:i:c:p:85-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.