IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v178y2023ics1364032123001284.html
   My bibliography  Save this article

Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure

Author

Listed:
  • Ding, Feng
  • Yang, Jianping
  • Zhou, Zan

Abstract

China has built the world's largest high-speed railway (HSR) network, which has fueled regional economic growth. Mounting photovoltaics (PV) on the roofs of HSR station houses and platforms can potentially provide electricity for high-speed trains, change the energy mix, and reduce emissions. Therefore, it is crucial to assess the technical potential and economic environmental performance of PV for the HSR infrastructure. In this study, the PV potential of 973 stations of 108 HSR lines in China was studied in conjunction with geographic information system (GIS). The results showed that the PV capacity that can be deployed in China's HSR stations at horizontal and optimum tilt angles was 4.36 GW and 2.81 GW, with a total power generation capacity of 108.55 TWh and 74.88 TWh, respectively, which presented a huge power generation potential. The economic analysis showed that the All-consumption scenario and optimum tilt angle had better economic profits than the All-feed-into-grid scenario and the horizontal angle, respectively. Moreover, the use of PV could reduce carbon emissions by HSR stations by 79,895.73 kilotons and 55,112.53 kilotons at horizontal and optimum tilt angles, respectively. The study revealed that the combination of PV and HSR infrastructure was a good strategy for sustainable transportation and carbon neutrality goals.

Suggested Citation

  • Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123001284
    DOI: 10.1016/j.rser.2023.113272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123001284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinyue Yan & Ying Yang & Pietro Elia Campana & Jijiang He, 2019. "City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China," Nature Energy, Nature, vol. 4(8), pages 709-717, August.
    2. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    3. Lukač, Niko & Seme, Sebastijan & Dežan, Katarina & Žalik, Borut & Štumberger, Gorazd, 2016. "Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data," Energy, Elsevier, vol. 107(C), pages 854-865.
    4. L. Kruitwagen & K. T. Story & J. Friedrich & L. Byers & S. Skillman & C. Hepburn, 2021. "A global inventory of photovoltaic solar energy generating units," Nature, Nature, vol. 598(7882), pages 604-610, October.
    5. Siddharth Joshi & Shivika Mittal & Paul Holloway & Priyadarshi Ramprasad Shukla & Brian Ó Gallachóir & James Glynn, 2021. "High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Suomalainen, Kiti & Wang, Vincent & Sharp, Basil, 2017. "Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level," Renewable Energy, Elsevier, vol. 111(C), pages 463-475.
    7. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    8. Sulaeman, Samer & Brown, Erik & Quispe-Abad, Raul & Müller, Norbert, 2021. "Floating PV system as an alternative pathway to the amazon dam underproduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    10. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    11. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    12. Thomas, Austin & Racherla, Pavan, 2020. "Constructing statutory energy goal compliant wind and solar PV infrastructure pathways," Renewable Energy, Elsevier, vol. 161(C), pages 1-19.
    13. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    14. Alghoul, M.A. & Hammadi, F.Y. & Amin, Nowshad & Asim, Nilofar, 2018. "The role of existing infrastructure of fuel stations in deploying solar charging systems, electric vehicles and solar energy: A preliminary analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 317-326.
    15. Jonathan J. Buonocore & Ernani Choma & Aleyda H. Villavicencio & John D. Spengler & Dinah A. Koehler & John S. Evans & Jos Lelieveld & Piet Klop & Ramon Sanchez-Pina, 2019. "Correction: Metrics for the sustainable development goals: renewable energy and transportation," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-2, December.
    16. Jung, Jaehoon & Han, SangUk & Kim, Byungil, 2019. "Digital numerical map-oriented estimation of solar energy potential for site selection of photovoltaic solar panels on national highway slopes," Applied Energy, Elsevier, vol. 242(C), pages 57-68.
    17. Scott Thacker & Daniel Adshead & Marianne Fay & Stéphane Hallegatte & Mark Harvey & Hendrik Meller & Nicholas O’Regan & Julie Rozenberg & Graham Watkins & Jim W. Hall, 2019. "Infrastructure for sustainable development," Nature Sustainability, Nature, vol. 2(4), pages 324-331, April.
    18. Cheng, Peng & Liu, Wenquan & Ma, Jing & Zhang, Libo & Jia, Limin, 2022. "Solar-powered rail transportation in China: Potential, scenario, and case," Energy, Elsevier, vol. 245(C).
    19. Qiu, Tianzhi & Wang, Lunche & Lu, Yunbo & Zhang, Ming & Qin, Wenmin & Wang, Shaoqiang & Wang, Lizhe, 2022. "Potential assessment of photovoltaic power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Alhammami, Hasan & An, Heungjo, 2021. "Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 167(C), pages 359-368.
    21. Wang, Yao & Dong, Weijia, 2022. "How China's high-speed rail promote local economy: New evidence from county-level panel data," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 67-81.
    22. Chang, Yuan & Lei, Shuhua & Teng, Jianjian & Zhang, Jiangxue & Zhang, Lixiao & Xu, Xiao, 2019. "The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling," Energy, Elsevier, vol. 182(C), pages 1193-1201.
    23. Yatang Lin & Yu Qin & Jing Wu & Mandi Xu, 2021. "Impact of high-speed rail on road traffic and greenhouse gas emissions," Nature Climate Change, Nature, vol. 11(11), pages 952-957, November.
    24. Choi, Chong Seok & Ravi, Sujith & Siregar, Iskandar Z. & Dwiyanti, Fifi Gus & Macknick, Jordan & Elchinger, Michael & Davatzes, Nicholas C., 2021. "Combined land use of solar infrastructure and agriculture for socioeconomic and environmental co-benefits in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    25. Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
    26. Jonathan J. Buonocore & Ernani Choma & Aleyda H. Villavicencio & John D. Spengler & Dinah A. Koehler & John S. Evans & Jos Lelieveld & Piet Klop & Ramon Sanchez-Pina, 2019. "Metrics for the sustainable development goals: renewable energy and transportation," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    27. Deshmukh, Swaraj Sanjay & Pearce, Joshua M., 2021. "Electric vehicle charging potential from retail parking lot solar photovoltaic awnings," Renewable Energy, Elsevier, vol. 169(C), pages 608-617.
    28. Ferri, Carlotta & Ziar, Hesan & Nguyen, Thien Tin & van Lint, Hans & Zeman, Miro & Isabella, Olindo, 2022. "Mapping the photovoltaic potential of the roads including the effect of traffic," Renewable Energy, Elsevier, vol. 182(C), pages 427-442.
    29. Shujie Yao & Fan Zhang & Feng Wang & Jinghua Ou, 2019. "Regional economic growth and the role of high-speed rail in China," Applied Economics, Taylor & Francis Journals, vol. 51(32), pages 3465-3479, July.
    30. Ning, Fuwei & Ji, Li & Ma, Jing & Jia, Limin & Yu, Zhenwei, 2021. "Research and analysis of a flexible integrated development model of railway system and photovoltaic in China," Renewable Energy, Elsevier, vol. 175(C), pages 853-867.
    31. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2022. "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants," Renewable Energy, Elsevier, vol. 185(C), pages 1062-1077.
    32. Lee, Minhyun & Hong, Taehoon & Jeong, Kwangbok & Kim, Jimin, 2018. "A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity," Applied Energy, Elsevier, vol. 232(C), pages 640-656.
    33. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    34. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    35. Oh, Myeongchan & Kim, Sung-Min & Park, Hyeong-Dong, 2020. "Estimation of photovoltaic potential of solar bus in an urban area: Case study in Gwanak, Seoul, Korea," Renewable Energy, Elsevier, vol. 160(C), pages 1335-1348.
    36. Feng, Xuesong, 2011. "Optimization of target speeds of high-speed railway trains for traction energy saving and transport efficiency improvement," Energy Policy, Elsevier, vol. 39(12), pages 7658-7665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Sheng & Yu, Ran & Wen, Zuhui & Xu, Jiayu & Liu, Peihan & Zhou, Yunqiao & Zheng, Xiaoqi & Wang, Lei & Hao, Jiming, 2023. "Impact of labor and energy allocation imbalance on carbon emission efficiency in China's industrial sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    3. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    4. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    6. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    7. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    8. Suntiti Yoomak & Theerasak Patcharoen & Atthapol Ngaopitakkul, 2019. "Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    9. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    10. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Zhang, Tao & Li, Shaojie & Yang, Zhi & Liu, Xiaohua & Jiang, Yi, 2023. "Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy," Applied Energy, Elsevier, vol. 341(C).
    11. Mengjin Hu & Xiaoyang Song & Zhongxu Bao & Zhao Liu & Mengju Wei & Yaohuan Huang, 2022. "Evaluation of the Economic Potential of Photovoltaic Power Generation in Road Spaces," Energies, MDPI, vol. 15(17), pages 1-16, September.
    12. Gomez-Exposito, Antonio & Arcos-Vargas, Angel & Gutierrez-Garcia, Francisco, 2020. "On the potential contribution of rooftop PV to a sustainable electricity mix: The case of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    14. Chen, Yu & Zhao, Changyi & Chen, Shan & Chen, Wenqing & Wan, Kunyang & Wei, Jia, 2023. "Riding the green rails: Exploring the nexus between high-speed trains, green innovation, and carbon emissions," Energy, Elsevier, vol. 282(C).
    15. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    16. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    17. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    18. Liu, Junling & Li, Mengyue & Xue, Liya & Kobashi, Takuro, 2022. "A framework to evaluate the energy-environment-economic impacts of developing rooftop photovoltaics integrated with electric vehicles at city level," Renewable Energy, Elsevier, vol. 200(C), pages 647-657.
    19. Chen, Han & Chen, Wenying, 2021. "Status, trend, economic and environmental impacts of household solar photovoltaic development in China: Modelling from subnational perspective," Applied Energy, Elsevier, vol. 303(C).
    20. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123001284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.