IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6647-d290485.html
   My bibliography  Save this article

Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand

Author

Listed:
  • Suntiti Yoomak

    (Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Theerasak Patcharoen

    (Faculty of Industrial Technology, Rajabhat Rajanagarindra University, Chachoengsao 24000, Thailand)

  • Atthapol Ngaopitakkul

    (Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

Abstract

Solar rooftop systems in the residential sector have been rapidly increased in the term of installed capacity. There are various factors, such as climate, temperature, and solar radiation, that have effects on solar power generation efficiency. This paper presents a performance assessment of a solar system installed on the rooftop of residence in different regions of Thailand by using PSIM simulation. Solar rooftop installation comparison in different regions is carried out to evaluate the suitable location. In addition, three types of solar panels are used in research: monocrystalline, polycrystalline, and thin-film. The electrical parameters of real power and energy generated from the systems are investigated and analyzed. Furthermore, the economic evaluation of different solar rooftop system sizes using the monocrystalline module is investigated by using economic indicators of discounted payback period (DPP), net present value (NPV), internal rate of return (IRR), and profitability index (PI). Results show that the central region of Thailand is a suitable place for installing solar rooftop in terms of solar radiation, and the temperature has more solar power generation capacity than the other regions. The monocrystalline and polycrystalline solar panels can generate maximum power close to each other. All solar rooftop sizes with the Feed-in Tariff (FiT) scheme give the same DPP of 6.1 years, IRR of 15%, and PI of 2.57 which are better than the cases without the FiT scheme. However, a large-scale installation of solar rooftop systems can receive more electrical energy produced from the solar rooftop systems. As a result, the larger solar rooftop system sizes can achieve better economic satisfaction.

Suggested Citation

  • Suntiti Yoomak & Theerasak Patcharoen & Atthapol Ngaopitakkul, 2019. "Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6647-:d:290485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tantisattayakul, Thanapol & Kanchanapiya, Premrudee, 2017. "Financial measures for promoting residential rooftop photovoltaics under a feed-in tariff framework in Thailand," Energy Policy, Elsevier, vol. 109(C), pages 260-269.
    2. Rathore, Pushpendra Kumar Singh & Chauhan, Durg Singh & Singh, Rudra Pratap, 2019. "Decentralized solar rooftop photovoltaic in India: On the path of sustainable energy security," Renewable Energy, Elsevier, vol. 131(C), pages 297-307.
    3. Buffat, René & Grassi, Stefano & Raubal, Martin, 2018. "A scalable method for estimating rooftop solar irradiation potential over large regions," Applied Energy, Elsevier, vol. 216(C), pages 389-401.
    4. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    5. Sopitsuda Tongsopit & Sunee Moungchareon & Apinya Aksornkij & Tanai Potisat, . "Business Models and Financing Options for a Rapid Scale-up of Rooftop Solar Power Systems in Thailand," Chapters, in: Shigeru Kimura & Youngho Chang & Yanfei Li (ed.), Financing Renewable Energy Development in East Asia Summit Countries A Primer of Effective Policy Instruments, chapter 4, pages 79-136, Economic Research Institute for ASEAN and East Asia (ERIA).
    6. Chaianong, Aksornchan & Pharino, Chanathip, 2015. "Outlook and challenges for promoting solar photovoltaic rooftops in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 356-372.
    7. Lee, Minhyun & Hong, Taehoon & Jeong, Jaewook & Jeong, Kwangbok, 2018. "Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level," Energy, Elsevier, vol. 160(C), pages 213-224.
    8. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    9. Gracia-Amillo, Ana M. & Bardizza, Giorgio & Salis, Elena & Huld, Thomas & Dunlop, Ewan D., 2018. "Energy-based metric for analysis of organic PV devices in comparison with conventional industrial technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 76-89.
    10. Chimres, Nares & Wongwises, Somchai, 2016. "Critical review of the current status of solar energy in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 198-207.
    11. Tongsopit, Sopitsuda & Junlakarn, Siripha & Wibulpolprasert, Wichsinee & Chaianong, Aksornchan & Kokchang, Phimsupha & Hoang, Nghia Vu, 2019. "The economics of solar PV self-consumption in Thailand," Renewable Energy, Elsevier, vol. 138(C), pages 395-408.
    12. Tongsopit, Sopitsuda & Moungchareon, Sunee & Aksornkij, Apinya & Potisat, Tanai, 2016. "Business models and financing options for a rapid scale-up of rooftop solar power systems in Thailand," Energy Policy, Elsevier, vol. 95(C), pages 447-457.
    13. Lee, Minhyun & Hong, Taehoon & Jeong, Kwangbok & Kim, Jimin, 2018. "A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity," Applied Energy, Elsevier, vol. 232(C), pages 640-656.
    14. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    15. Eskew, John & Ratledge, Meredith & Wallace, Michael & Gheewala, Shabbir H. & Rakkwamsuk, Pattana, 2018. "An environmental Life Cycle Assessment of rooftop solar in Bangkok, Thailand," Renewable Energy, Elsevier, vol. 123(C), pages 781-792.
    16. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Chaianong, Aksornchan & Tongsopit, Sopitsuda & Bangviwat, Athikom & Menke, Christoph, 2019. "Bill saving analysis of rooftop PV customers and policy implications for Thailand," Renewable Energy, Elsevier, vol. 131(C), pages 422-434.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahid Ali & Qingyou Yan & Muhammad Sajjad Hussain & Muhammad Irfan & Munir Ahmad & Asif Razzaq & Vishal Dagar & Cem Işık, 2021. "Evaluating Green Technology Strategies for the Sustainable Development of Solar Power Projects: Evidence from Pakistan," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    2. Fathi Abdellatif Belhouadjeb & Abdallah Boumakhleb & Abdelhalim Toaiba & Abdelghafour Doghbage & Benbader Habib & Hassen Boukerker & Enrique Murgueitio & Walid Soufan & Mohamad Isam Almadani & Belkace, 2022. "The Forage Plantation Program between Desertification Mitigation and Livestock Feeding: An Economic Analysis," Land, MDPI, vol. 11(6), pages 1-16, June.
    3. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    4. Nicholas Mukisa & Ramon Zamora & Tek Tjing Lie, 2022. "Energy Business Initiatives for Grid-Connected Solar Photovoltaic Systems: An Overview," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    5. Codina, Eloi & Domenech, Bruno & Juanpera, Marc & Palomo-Avellaneda, Leopold & Pastor, Rafael, 2023. "Is switching to solar energy a feasible investment? A techno-economic analysis of domestic consumers in Spain," Energy Policy, Elsevier, vol. 183(C).
    6. Eleonora Riva Sanseverino & Hang Le Thi Thuy & Manh-Hai Pham & Maria Luisa Di Silvestre & Ninh Nguyen Quang & Salvatore Favuzza, 2020. "Review of Potential and Actual Penetration of Solar Power in Vietnam," Energies, MDPI, vol. 13(10), pages 1-25, May.
    7. Tung Nguyen Thanh & Phap Vu Minh & Kien Duong Trung & Tuan Do Anh, 2021. "Study on Performance of Rooftop Solar Power Generation Combined with Battery Storage at Office Building in Northeast Region, Vietnam," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    8. Rami Alamoudi & Osman Taylan & Mehmet Azmi Aktacir & Enrique Herrera-Viedma, 2021. "Designing a Solar Photovoltaic System for Generating Renewable Energy of a Hospital: Performance Analysis and Adjustment Based on RSM and ANFIS Approaches," Mathematics, MDPI, vol. 9(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    2. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    3. Methee Srikranjanapert & Siripha Junlakarn & Naebboon Hoonchareon, 2021. "How an Integration of Home Energy Management and Battery System Affects the Economic Benefits of Residential PV System Owners in Thailand," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    4. Wichsinee Wibulpolprasert & Umnouy Ponsukcharoen & Siripha Junlakarn & Sopitsuda Tongsopit, 2021. "Preliminarily Screening Geographical Hotspots for New Rooftop PV Installation: A Case Study in Thailand," Energies, MDPI, vol. 14(11), pages 1-30, June.
    5. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    6. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    7. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Gomez-Exposito, Antonio & Arcos-Vargas, Angel & Gutierrez-Garcia, Francisco, 2020. "On the potential contribution of rooftop PV to a sustainable electricity mix: The case of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Liu, Junling & Li, Mengyue & Xue, Liya & Kobashi, Takuro, 2022. "A framework to evaluate the energy-environment-economic impacts of developing rooftop photovoltaics integrated with electric vehicles at city level," Renewable Energy, Elsevier, vol. 200(C), pages 647-657.
    11. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    12. Sebastian Krapf & Nils Kemmerzell & Syed Khawaja Haseeb Uddin & Manuel Hack Vázquez & Fabian Netzler & Markus Lienkamp, 2021. "Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images and Deep Learning," Energies, MDPI, vol. 14(13), pages 1-22, June.
    13. Alhammami, Hasan & An, Heungjo, 2021. "Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 167(C), pages 359-368.
    14. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    15. Gupta, Rahul & Sossan, Fabrizio & Paolone, Mario, 2021. "Countrywide PV hosting capacity and energy storage requirements for distribution networks: The case of Switzerland," Applied Energy, Elsevier, vol. 281(C).
    16. Chawin Prapanukool & Surachai Chaitusaney, 2020. "Designing Solar Power Purchase Agreement of Rooftop PVs with Battery Energy Storage Systems under the Behind-the-Meter Scheme," Energies, MDPI, vol. 13(17), pages 1-18, August.
    17. Walch, Alina & Castello, Roberto & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2020. "Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty," Applied Energy, Elsevier, vol. 262(C).
    18. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    19. Opoku, Richard & Obeng, George Y. & Adjei, Eunice A. & Davis, Francis & Akuffo, Fred O., 2020. "Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana," Renewable Energy, Elsevier, vol. 155(C), pages 65-78.
    20. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6647-:d:290485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.