IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p4018-d588081.html
   My bibliography  Save this article

Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings

Author

Listed:
  • Guglielmina Mutani

    (Responsible Risk Resilience Centre—R3C, Department of Energy, Politecnico di Torino, 10129 Turin, Italy)

  • Valeria Todeschi

    (Future Urban Legacy Lab—FULL, Department of Energy, Politecnico di Torino, 10129 Turin, Italy)

Abstract

It is common practice, in the production of photovoltaic energy to only use the south-exposed roof surface of a building, in order to achieve the maximum production of solar energy while lowering the costs of the energy and the solar technologies. However, using the south-exposed surface of a roof only allows a small quota of the energy demand to be covered. Roof surfaces oriented in other directions could also be used to better cover the energy load profile. The aim of this work is to investigate the benefits, in terms of costs, self-sufficiency and self-consumption, of roof integrated photovoltaic technologies on residential buildings with different orientations. A cost-optimal analysis has been carried out taking into account the economic incentives for a collective self-consumer configuration. It has emerged, from this analysis, that the better the orientation is, the higher the energy security and the lower the energy costs and those for the installation of photovoltaic technologies. In general, the use of south-facing and north-facing roof surfaces for solar energy production has both economic and energy benefits. The self-sufficiency index can on average be increased by 8.5% through the use of photovoltaic installations in two directions on gable roofs, and the maximum level that can be achieved was on average 41.8, 41.5 and 35.7% for small, medium and large condominiums, respectively. Therefore, it could be convenient to exploit all the potential orientations of photovoltaic panels in cities to improve energy security and to provide significant economic benefits for the residential users.

Suggested Citation

  • Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4018-:d:588081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/4018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/4018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Ciocia & Angela Amato & Paolo Di Leo & Stefania Fichera & Gabriele Malgaroli & Filippo Spertino & Slavka Tzanova, 2021. "Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation," Energies, MDPI, vol. 14(6), pages 1-24, March.
    2. Hakim Azaioud & Jan Desmet & Lieven Vandevelde, 2020. "Benefit Evaluation of PV Orientation for Individual Residential Consumers," Energies, MDPI, vol. 13(19), pages 1-24, October.
    3. Oh, Myeongchan & Kim, Jin-Young & Kim, Boyoung & Yun, Chang-Yeol & Kim, Chang Ki & Kang, Yong-Heack & Kim, Hyun-Goo, 2021. "Tolerance angle concept and formula for practical optimal orientation of photovoltaic panels," Renewable Energy, Elsevier, vol. 167(C), pages 384-394.
    4. Meskiana Boulahia & Kahina Amal Djiar & Miguel Amado, 2021. "Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria," Energies, MDPI, vol. 14(6), pages 1-16, March.
    5. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    6. Suomalainen, Kiti & Wang, Vincent & Sharp, Basil, 2017. "Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level," Renewable Energy, Elsevier, vol. 111(C), pages 463-475.
    7. Tukia, Toni & Uimonen, Semen & Siikonen, Marja-Liisa & Donghi, Claudio & Lehtonen, Matti, 2019. "Modeling the aggregated power consumption of elevators – the New York city case study," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Riyad Mubarak & Eduardo Weide Luiz & Gunther Seckmeyer, 2019. "Why PV Modules Should Preferably No Longer Be Oriented to the South in the Near Future," Energies, MDPI, vol. 12(23), pages 1-16, November.
    9. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    10. Gómez-Navarro, Tomás & Brazzini, Tommaso & Alfonso-Solar, David & Vargas-Salgado, Carlos, 2021. "Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain)," Renewable Energy, Elsevier, vol. 174(C), pages 372-381.
    11. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    12. Gracia-Amillo, Ana M. & Bardizza, Giorgio & Salis, Elena & Huld, Thomas & Dunlop, Ewan D., 2018. "Energy-based metric for analysis of organic PV devices in comparison with conventional industrial technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 76-89.
    13. Sanaieian, Haniyeh & Tenpierik, Martin & Linden, Kees van den & Mehdizadeh Seraj, Fatemeh & Mofidi Shemrani, Seyed Majid, 2014. "Review of the impact of urban block form on thermal performance, solar access and ventilation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 551-560.
    14. Wong, Man Sing & Zhu, Rui & Liu, Zhizhao & Lu, Lin & Peng, Jinqing & Tang, Zhaoqin & Lo, Chung Ho & Chan, Wai Ki, 2016. "Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies," Renewable Energy, Elsevier, vol. 99(C), pages 325-335.
    15. Hartner, Michael & Ortner, André & Hiesl, Albert & Haas, Reinhard, 2015. "East to west – The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective," Applied Energy, Elsevier, vol. 160(C), pages 94-107.
    16. Firozjaei, Mohammad Karimi & Nematollahi, Omid & Mijani, Naeim & Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Toomanian, Ara, 2019. "An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning," Renewable Energy, Elsevier, vol. 136(C), pages 1130-1146.
    17. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    19. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    20. Ilaria Delponte & Corrado Schenone, 2020. "RES Implementation in Urban Areas: An Updated Overview," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Universal Model to Predict Expected Direction of Products Quality Improvement," Energies, MDPI, vol. 15(5), pages 1-18, February.
    2. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    3. Guglielmina Mutani & Pamela Vocale & Kavan Javanroodi, 2023. "Toward Improved Urban Building Energy Modeling Using a Place-Based Approach," Energies, MDPI, vol. 16(9), pages 1-17, May.
    4. Anna Fijałkowska & Kamila Waksmundzka & Jerzy Chmiel, 2022. "Assessment of the Effectiveness of Photovoltaic Panels at Public Transport Stops: 3D Spatial Analysis as a Tool to Strengthen Decision Making," Energies, MDPI, vol. 15(3), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    2. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    3. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    4. Yildirim, Deniz & Büyüksalih, Gürcan & Şahin, Ahmet Duran, 2021. "Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications," Applied Energy, Elsevier, vol. 304(C).
    5. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    6. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    7. Walch, Alina & Rüdisüli, Martin, 2023. "Strategic PV expansion and its impact on regional electricity self-sufficiency: Case study of Switzerland," Applied Energy, Elsevier, vol. 346(C).
    8. Sungha Yoon & Jintae Park & Chaeyoung Lee & Sangkwon Kim & Yongho Choi & Soobin Kwak & Hyundong Kim & Junseok Kim, 2023. "Optimal Orientation of Solar Panels for Multi-Apartment Buildings," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    9. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    10. Zhong, Teng & Zhang, Kai & Chen, Min & Wang, Yijie & Zhu, Rui & Zhang, Zhixin & Zhou, Zixuan & Qian, Zhen & Lv, Guonian & Yan, Jinyue, 2021. "Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery," Renewable Energy, Elsevier, vol. 168(C), pages 181-194.
    11. Suntiti Yoomak & Theerasak Patcharoen & Atthapol Ngaopitakkul, 2019. "Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    12. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    13. Myeongchan Oh & Hyeong-Dong Park, 2019. "Optimization of Solar Panel Orientation Considering Temporal Volatility and Scenario-Based Photovoltaic Potential: A Case Study in Seoul National University," Energies, MDPI, vol. 12(17), pages 1-17, August.
    14. Alhammami, Hasan & An, Heungjo, 2021. "Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 167(C), pages 359-368.
    15. Zhong, Qing & Nelson, Jake R. & Tong, Daoqin & Grubesic, Tony H., 2022. "A spatial optimization approach to increase the accuracy of rooftop solar energy assessments," Applied Energy, Elsevier, vol. 316(C).
    16. Gomez-Exposito, Antonio & Arcos-Vargas, Angel & Gutierrez-Garcia, Francisco, 2020. "On the potential contribution of rooftop PV to a sustainable electricity mix: The case of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    18. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    19. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    20. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4018-:d:588081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.