IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics1364032121011667.html
   My bibliography  Save this article

Potential assessment of photovoltaic power generation in China

Author

Listed:
  • Qiu, Tianzhi
  • Wang, Lunche
  • Lu, Yunbo
  • Zhang, Ming
  • Qin, Wenmin
  • Wang, Shaoqiang
  • Wang, Lizhe

Abstract

Accurate assessment of the photovoltaic (PV) power generation potential in China is important for the reduction of carbon emission intensity and the achievement of the goal of Carbon Neutral. This study used a PV power generation potential assessment system based on Geographic Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods to investigate the PV power generation potential in China. Firstly, the high spatial-temporal resolution and high-quality ERA5 data and related technical, geographic, and social factors were used to assess the theoretical power generation and land suitability of PV power generation. Then, the theoretical power generation and land suitability were comprehensively considered to evaluate the PV power generation potential of China in 2015. The results showed that the average suitability score of land in China is 0.1058 and the suitable land for PV power generation is about 993,000 km2 in 2015. The PV power generation potential of China is 131.942 PWh, which is approximately 23 times the electricity demand of China in 2015. The spatial distribution characteristics of PV power generation potential mainly showed a downward trend from northwest to southeast. Meanwhile, there were clear spatial dislocations between the PV power generation potential and the population distribution and electricity demand in China. In areas that accounting for about 75% of the PV potential, population and electricity demand only accounted for about 16% of the total population and total electricity demand in China. Besides, the degree of tapping PV potential in China is not high, and the installed capacity of most provinces in China accounted for no more than 1% of the capacity potential, especially in the PV potential-rich areas.

Suggested Citation

  • Qiu, Tianzhi & Wang, Lunche & Lu, Yunbo & Zhang, Ming & Qin, Wenmin & Wang, Shaoqiang & Wang, Lizhe, 2022. "Potential assessment of photovoltaic power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121011667
    DOI: 10.1016/j.rser.2021.111900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121011667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda & Yadav, Pankaj, 2017. "Evaluation of relative impact of aerosols on photovoltaic cells through combined Shannon's entropy and Data Envelopment Analysis (DEA)," Renewable Energy, Elsevier, vol. 105(C), pages 344-353.
    2. Meryem Tahri & Mustapha Hakdaoui & Mohamed Maanan, 2015. "The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco," Post-Print hal-01185533, HAL.
    3. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    4. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    5. Singh Doorga, Jay Rovisham & Rughooputh, Soonil D.D.V. & Boojhawon, Ravindra, 2019. "High resolution spatio-temporal modelling of solar photovoltaic potential for tropical islands: Case of Mauritius," Energy, Elsevier, vol. 169(C), pages 972-987.
    6. Pérez, Juan C. & González, Albano & Díaz, Juan P. & Expósito, Francisco J. & Felipe, Jonatan, 2019. "Climate change impact on future photovoltaic resource potential in an orographically complex archipelago, the Canary Islands," Renewable Energy, Elsevier, vol. 133(C), pages 749-759.
    7. Yushchenko, Alisa & de Bono, Andrea & Chatenoux, Bruno & Kumar Patel, Martin & Ray, Nicolas, 2018. "GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2088-2103.
    8. Siala, Kais & Stich, Jürgen, 2016. "Estimation of the PV potential in ASEAN with a high spatial and temporal resolution," Renewable Energy, Elsevier, vol. 88(C), pages 445-456.
    9. Tahri, Meryem & Hakdaoui, Mustapha & Maanan, Mohamed, 2015. "The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1354-1362.
    10. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    11. Khalid, Anjum & Junaidi, Haroon, 2013. "Study of economic viability of photovoltaic electric power for Quetta – Pakistan," Renewable Energy, Elsevier, vol. 50(C), pages 253-258.
    12. Hachicha, Ahmed Amine & Al-Sawafta, Israa & Said, Zafar, 2019. "Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 141(C), pages 287-297.
    13. Uyan, Mevlut, 2013. "GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 11-17.
    14. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    15. Amy H. I. Lee & He-Yau Kang & You-Jyun Liou, 2017. "A Hybrid Multiple-Criteria Decision-Making Approach for Photovoltaic Solar Plant Location Selection," Sustainability, MDPI, vol. 9(2), pages 1-21, January.
    16. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    17. Sun, Ke & Lu, Lin & Jiang, Yu & Wang, Yuanhao & Zhou, Kun & He, Zhu, 2018. "Integrated effects of PM2.5 deposition, module surface conditions and nanocoatings on solar PV surface glass transmittance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4107-4120.
    18. Ehsan Noorollahi & Dawud Fadai & Mohsen Akbarpour Shirazi & Seyed Hassan Ghodsipour, 2016. "Land Suitability Analysis for Solar Farms Exploitation Using GIS and Fuzzy Analytic Hierarchy Process (FAHP)—A Case Study of Iran," Energies, MDPI, vol. 9(8), pages 1-24, August.
    19. Zhao, Xiaohu & Huang, Guohe & Lu, Chen & Zhou, Xiong & Li, Yongping, 2020. "Impacts of climate change on photovoltaic energy potential: A case study of China," Applied Energy, Elsevier, vol. 280(C).
    20. Aly, Ahmed & Jensen, Steen Solvang & Pedersen, Anders Branth, 2017. "Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis," Renewable Energy, Elsevier, vol. 113(C), pages 159-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    3. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2022. "Measuring dynamics of solar energy resource quality: Methodology and policy implications for reducing regional energy inequality," Renewable Energy, Elsevier, vol. 197(C), pages 138-150.
    4. Zhang, Zhengjia & Wang, Qingxiang & Liu, Zhengguang & Chen, Qi & Guo, Zhiling & Zhang, Haoran, 2023. "Renew mineral resource-based cities: Assessment of PV potential in coal mining subsidence areas," Applied Energy, Elsevier, vol. 329(C).
    5. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Agbotiname Lucky Imoize & Hope Ikoghene Obakhena & Francis Ifeanyi Anyasi & Samarendra Nath Sur, 2022. "A Review of Energy Efficiency and Power Control Schemes in Ultra-Dense Cell-Free Massive MIMO Systems for Sustainable 6G Wireless Communication," Sustainability, MDPI, vol. 14(17), pages 1-38, September.
    7. Xie, Mingxi & Jia, Teng & Dai, Yanjun, 2022. "Hybrid photovoltaic/solar chimney power plant combined with agriculture: The transformation of a decommissioned coal-fired power plant," Renewable Energy, Elsevier, vol. 191(C), pages 1-16.
    8. Mussawir Ul Mehmood & Abasin Ulasyar & Waleed Ali & Kamran Zeb & Haris Sheh Zad & Waqar Uddin & Hee-Je Kim, 2023. "A New Cloud-Based IoT Solution for Soiling Ratio Measurement of PV Systems Using Artificial Neural Network," Energies, MDPI, vol. 16(2), pages 1-14, January.
    9. Hou, Wenjuan & Zhang, Xueliang & Wu, Maowei & Yuxin Feng, & Yang, Linsheng, 2022. "Integrating stability and complementarity to assess the accommodable generation potential of multiscale solar and wind resources: A case study in a resource-based area in China," Energy, Elsevier, vol. 261(PB).
    10. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rios, R. & Duarte, S., 2021. "Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    3. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    4. Majumdar, Debaleena & Pasqualetti, Martin J., 2019. "Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA," Renewable Energy, Elsevier, vol. 134(C), pages 1213-1231.
    5. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    6. Shorabeh, Saman Nadizadeh & Firozjaei, Mohammad Karimi & Nematollahi, Omid & Firozjaei, Hamzeh Karimi & Jelokhani-Niaraki, Mohammadreza, 2019. "A risk-based multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran," Renewable Energy, Elsevier, vol. 143(C), pages 958-973.
    7. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    8. Wang, Yongli & Tao, Siyi & Chen, Xin & Huang, Feifei & Xu, Xiaomin & Liu, Xiaoli & Liu, Yang & Liu, Lin, 2022. "Method multi-criteria decision-making method for site selection analysis and evaluation of urban integrated energy stations based on geographic information system," Renewable Energy, Elsevier, vol. 194(C), pages 273-292.
    9. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    10. Yılmaz, Kutay & Dinçer, Ali Ersin & Ayhan, Elif N., 2023. "Exploring flood and erosion risk indices for optimal solar PV site selection and assessing the influence of topographic resolution," Renewable Energy, Elsevier, vol. 216(C).
    11. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    12. Zhang, Zhengjia & Wang, Qingxiang & Liu, Zhengguang & Chen, Qi & Guo, Zhiling & Zhang, Haoran, 2023. "Renew mineral resource-based cities: Assessment of PV potential in coal mining subsidence areas," Applied Energy, Elsevier, vol. 329(C).
    13. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    14. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.
    15. Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Jelokhani-Niaraki, Mohammadreza & Homaee, Mehdi & Nematollahi, Omid, 2022. "The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Aly, Ahmed & Jensen, Steen Solvang & Pedersen, Anders Branth, 2017. "Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis," Renewable Energy, Elsevier, vol. 113(C), pages 159-175.
    17. Minaei, Foad & Minaei, Masoud & Kougias, Ioannis & Shafizadeh-Moghadam, Hossein & Hosseini, Seyed Ali, 2021. "Rural electrification in protected areas: A spatial assessment of solar photovoltaic suitability using the fuzzy best worst method," Renewable Energy, Elsevier, vol. 176(C), pages 334-345.
    18. Tercan, Emre & Eymen, Abdurrahman & Urfalı, Tuğrul & Saracoglu, Burak Omer, 2021. "A sustainable framework for spatial planning of photovoltaic solar farms using GIS and multi-criteria assessment approach in Central Anatolia, Turkey," Land Use Policy, Elsevier, vol. 102(C).
    19. Jesús A. Prieto-Amparán & Alfredo Pinedo-Alvarez & Carlos R. Morales-Nieto & María C. Valles-Aragón & Alan Álvarez-Holguín & Federico Villarreal-Guerrero, 2021. "A Regional GIS-Assisted Multi-Criteria Evaluation of Site-Suitability for the Development of Solar Farms," Land, MDPI, vol. 10(2), pages 1-19, February.
    20. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121011667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.