IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i6p1245-d1675853.html
   My bibliography  Save this article

Optimizing PV Panel Segmentation in Complex Environments Using Pre-Training and Simulated Annealing Algorithm: The JSWPVI

Author

Listed:
  • Rui Zhang

    (Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Ruikai Hong

    (Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Qiannan Li

    (Henan Provincial Key Laboratory of Ecological Environment Remote Sensing, Zhengzhou 450046, China)

  • Xu He

    (Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Age Shama

    (Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Jichao Lv

    (Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Renzhe Wu

    (Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)

Abstract

Photovoltaic (PV) technology, as a crucial source of clean energy, can effectively mitigate the impact of climate change caused by fossil fuel-based power generation. However, improper use of PV installations may encroach upon agricultural land, grasslands, and other land uses, thereby affecting local ecosystems. Exploring the spatial characteristics of centralized or distributed PV installations is essential for quantifying the development of clean energy and protecting agricultural land. Due to the distinct characteristics of centralized and distributed PV installations, large-scale mapping methods based on satellite remote sensing are insufficient for creating detailed PV distribution maps. This study proposes a model called Joint Semi-Supervised Weighted Adaptive PV Panel Recognition Model (JSWPVI)to achieve reliable PV mapping using UAV datasets. The JSWPVI employs a semi-supervised approach to construct and optimize a comprehensive segmentation network, incorporating the Spatial and Channel Weight Adaptive Model (SCWA) module to integrate different feature layers by reconstructing the spatial and channel weights of feature maps. Finally, a guided filtering algorithm is used to minimize non-edge noise while preserving edge integrity. Our results demonstrate that JSWPVI can accurately extract PV panels in both centralized and distributed scenarios, with an average extraction accuracy of 91.1% and a mean Intersection over Union of 77.7%. The findings of this study will assist regional policymakers in better quantifying renewable energy potential and assessing environmental impacts.

Suggested Citation

  • Rui Zhang & Ruikai Hong & Qiannan Li & Xu He & Age Shama & Jichao Lv & Renzhe Wu, 2025. "Optimizing PV Panel Segmentation in Complex Environments Using Pre-Training and Simulated Annealing Algorithm: The JSWPVI," Land, MDPI, vol. 14(6), pages 1-20, June.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1245-:d:1675853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/6/1245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/6/1245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Liang & Lu, Ning & Qin, Jun, 2025. "Joint-task learning framework with scale adaptive and position guidance modules for improved household rooftop photovoltaic segmentation in remote sensing image," Applied Energy, Elsevier, vol. 377(PB).
    2. Malof, Jordan M. & Bradbury, Kyle & Collins, Leslie M. & Newell, Richard G., 2016. "Automatic detection of solar photovoltaic arrays in high resolution aerial imagery," Applied Energy, Elsevier, vol. 183(C), pages 229-240.
    3. Qiu, Tianzhi & Wang, Lunche & Lu, Yunbo & Zhang, Ming & Qin, Wenmin & Wang, Shaoqiang & Wang, Lizhe, 2022. "Potential assessment of photovoltaic power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Marcus Vinícius Coelho Vieira da Costa & Osmar Luiz Ferreira de Carvalho & Alex Gois Orlandi & Issao Hirata & Anesmar Olino de Albuquerque & Felipe Vilarinho e Silva & Renato Fontes Guimarães & Robert, 2021. "Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation," Energies, MDPI, vol. 14(10), pages 1-15, May.
    5. Tan, Hongjun & Guo, Zhiling & Zhang, Haoran & Chen, Qi & Lin, Zhenjia & Chen, Yuntian & Yan, Jinyue, 2023. "Enhancing PV panel segmentation in remote sensing images with constraint refinement modules," Applied Energy, Elsevier, vol. 350(C).
    6. L. Kruitwagen & K. T. Story & J. Friedrich & L. Byers & S. Skillman & C. Hepburn, 2021. "A global inventory of photovoltaic solar energy generating units," Nature, Nature, vol. 598(7882), pages 604-610, October.
    7. Mayer, Kevin & Rausch, Benjamin & Arlt, Marie-Louise & Gust, Gunther & Wang, Zhecheng & Neumann, Dirk & Rajagopal, Ram, 2022. "3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Bouaziz, Mohamed Chahine & El Koundi, Mourad & Ennine, Ghaleb, 2024. "High-resolution solar panel detection in Sfax, Tunisia: A UNet-Based approach," Renewable Energy, Elsevier, vol. 235(C).
    3. Hu, Wei & Bradbury, Kyle & Malof, Jordan M. & Li, Boning & Huang, Bohao & Streltsov, Artem & Sydny Fujita, K. & Hoen, Ben, 2022. "What you get is not always what you see—pitfalls in solar array assessment using overhead imagery," Applied Energy, Elsevier, vol. 327(C).
    4. Chen, Di & Peng, Qiuzhi & Lu, Jiating & Huang, Peiyi & Song, Yufei & Peng, Fengcan, 2024. "Classification and segmentation of five photovoltaic types based on instance segmentation for generating more refined photovoltaic data," Applied Energy, Elsevier, vol. 376(PB).
    5. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    6. Li, Liang & Lu, Ning & Qin, Jun, 2025. "Joint-task learning framework with scale adaptive and position guidance modules for improved household rooftop photovoltaic segmentation in remote sensing image," Applied Energy, Elsevier, vol. 377(PB).
    7. Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
    8. Fabio Giussani & Eric Wilczynski & Claudio Zandonella Callegher & Giovanni Dalle Nogare & Cristian Pozza & Antonio Novelli & Simon Pezzutto, 2024. "Use of Machine Learning Techniques on Aerial Imagery for the Extraction of Photovoltaic Data within the Urban Morphology," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    9. Yang, Ruiqing & He, Guojin & Yin, Ranyu & Wang, Guizhou & Peng, Xueli & Zhang, Zhaoming & Long, Tengfei & Peng, Yan & Wang, Jianping, 2025. "A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge," Applied Energy, Elsevier, vol. 390(C).
    10. Gabriel Kasmi & Augustin Touron & Philippe Blanc & Yves-Marie Saint-Drenan & Maxime Fortin & Laurent Dubus, 2024. "Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data," Energies, MDPI, vol. 17(17), pages 1-22, August.
    11. Lu, Ning & Li, Liang & Qin, Jun, 2024. "PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images," Applied Energy, Elsevier, vol. 365(C).
    12. Tan, Hongjun & Guo, Zhiling & Zhang, Haoran & Chen, Qi & Lin, Zhenjia & Chen, Yuntian & Yan, Jinyue, 2023. "Enhancing PV panel segmentation in remote sensing images with constraint refinement modules," Applied Energy, Elsevier, vol. 350(C).
    13. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    14. Yang, Ruiqing & He, Guojin & Yin, Ranyu & Wang, Guizhou & Zhang, Zhaoming & Long, Tengfei & Peng, Yan, 2024. "Weakly-semi supervised extraction of rooftop photovoltaics from high-resolution images based on segment anything model and class activation map," Applied Energy, Elsevier, vol. 361(C).
    15. Zhumao Lu & Xiaokai Meng & Jinsong Li & Hua Yu & Shuai Wang & Zeng Qu & Jiayun Wang, 2025. "Detection of Photovoltaic Arrays in High-Spatial-Resolution Remote Sensing Images Using a Weight-Adaptive YOLO Model," Energies, MDPI, vol. 18(8), pages 1-19, April.
    16. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    17. Xiao Ma & Yongchun Yang & Huazhang Zhu, 2025. "Spatiotemporal Characteristics and Influencing Factors of Renewable Energy Production Development in Ningxia Hui Autonomous Region, China (2014–2021)," Land, MDPI, vol. 14(4), pages 1-26, April.
    18. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Yihan Wang & Chen Chen & Yuan Tao & Zongguo Wen, 2025. "Uneven renewable energy supply constrains the decarbonization effects of excessively deployed hydrogen-based DRI technology," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Shahryar Jafarinejad & Rebecca R. Hernandez & Sajjad Bigham & Bryan S. Beckingham, 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California," Sustainability, MDPI, vol. 15(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1245-:d:1675853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.