IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925006099.html
   My bibliography  Save this article

A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge

Author

Listed:
  • Yang, Ruiqing
  • He, Guojin
  • Yin, Ranyu
  • Wang, Guizhou
  • Peng, Xueli
  • Zhang, Zhaoming
  • Long, Tengfei
  • Peng, Yan
  • Wang, Jianping

Abstract

Most current efforts to improve model accuracy focus primarily on refining the model itself, often overlooking the critical role of dataset quality—particularly in the context of remote sensing big data. Many large-scale extraction studies of photovoltaics (PV) tend to focus on coarse delineation of PV plant boundaries, which limits the potential for more detailed downstream analysis. This paper presents a framework that targets the fine-grained extraction of PV panels within PV power plants, rather than merely capturing the external contours of the plants. By focusing on individual panel-level segmentation, this approach enables more accurate assessments for downstream applications, such as energy yield estimation and spatial optimization. The framework integrates prior knowledge to address challenges posed by land cover, imaging conditions, and background interference. An innovative label correction model reduces pixel-level labeling effort by 75 %, resulting in a more refined dataset. Experimental results show a significant accuracy improvement—from 78 % to 92 %—which is attributed not only to the model refinement but also to the enriched dataset. This dataset augmentation offers substantial advantages for PV mapping, enhancing the precision of energy-related analyses and facilitating more effective solar energy management.

Suggested Citation

  • Yang, Ruiqing & He, Guojin & Yin, Ranyu & Wang, Guizhou & Peng, Xueli & Zhang, Zhaoming & Long, Tengfei & Peng, Yan & Wang, Jianping, 2025. "A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925006099
    DOI: 10.1016/j.apenergy.2025.125879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925006099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.