IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924003477.html
   My bibliography  Save this article

Weakly-semi supervised extraction of rooftop photovoltaics from high-resolution images based on segment anything model and class activation map

Author

Listed:
  • Yang, Ruiqing
  • He, Guojin
  • Yin, Ranyu
  • Wang, Guizhou
  • Zhang, Zhaoming
  • Long, Tengfei
  • Peng, Yan

Abstract

Accurate extraction of rooftop photovoltaic from high-resolution remote sensing imagery is pivotal for propelling green energy planning and development. Conventional deep learning techniques often require labor-intensive pixel-level annotations, presenting substantial limitations. To overcome this hurdle, we introduce an innovative weakly-semi supervised segmentation framework that strategically employs both a “Segment Anything Model” (SAM) and “Class Activation Maps” (CAM) to produce high-precision and efficient pseudo-labels. To manage the unique error characteristics arising from the fusion of SAM and CAM-derived pseudo-labels, our framework incorporates semi-supervised learning algorithms and a boundary-aware loss function. We conducted experiments on a publicly available dataset, yielding an Intersection over Union (IoU) rate of 74% and an F1 score of 84%. Remarkably, this performance reaches approximately 88% of the benchmark established by fully-supervised methods. Our ablation studies further substantiate the effectiveness of our framework, thereby carving out a new trajectory in the realm of weakly-supervised segmentation. The study also delineates certain limitations, particularly focusing on the granularity of SAM-based segmentation and its implications for large-scale photovoltaic installations. Our methodology not only elevates segmentation accuracy but also substantially alleviates the manual labor required for dataset preparation.

Suggested Citation

  • Yang, Ruiqing & He, Guojin & Yin, Ranyu & Wang, Guizhou & Zhang, Zhaoming & Long, Tengfei & Peng, Yan, 2024. "Weakly-semi supervised extraction of rooftop photovoltaics from high-resolution images based on segment anything model and class activation map," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003477
    DOI: 10.1016/j.apenergy.2024.122964
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    2. L. Kruitwagen & K. T. Story & J. Friedrich & L. Byers & S. Skillman & C. Hepburn, 2021. "A global inventory of photovoltaic solar energy generating units," Nature, Nature, vol. 598(7882), pages 604-610, October.
    3. Ren, Simiao & Hu, Wayne & Bradbury, Kyle & Harrison-Atlas, Dylan & Malaguzzi Valeri, Laura & Murray, Brian & Malof, Jordan M., 2022. "Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis," Applied Energy, Elsevier, vol. 326(C).
    4. Tan, Hongjun & Guo, Zhiling & Zhang, Haoran & Chen, Qi & Lin, Zhenjia & Chen, Yuntian & Yan, Jinyue, 2023. "Enhancing PV panel segmentation in remote sensing images with constraint refinement modules," Applied Energy, Elsevier, vol. 350(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justinas Lekavičius & Valentas Gružauskas, 2024. "Data Augmentation with Generative Adversarial Network for Solar Panel Segmentation from Remote Sensing Images," Energies, MDPI, vol. 17(13), pages 1-20, June.
    2. Wang, Bo & Chen, Qi & Wang, Mengmeng & Chen, Yuntian & Zhang, Zhengjia & Liu, Xiuguo & Gao, Wei & Zhang, Yanzhen & Zhang, Haoran, 2024. "PVF-10: A high-resolution unmanned aerial vehicle thermal infrared image dataset for fine-grained photovoltaic fault classification," Applied Energy, Elsevier, vol. 376(PA).
    3. Yang, Ruiqing & He, Guojin & Yin, Ranyu & Wang, Guizhou & Peng, Xueli & Zhang, Zhaoming & Long, Tengfei & Peng, Yan & Wang, Jianping, 2025. "A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge," Applied Energy, Elsevier, vol. 390(C).
    4. Gabriel Kasmi & Augustin Touron & Philippe Blanc & Yves-Marie Saint-Drenan & Maxime Fortin & Laurent Dubus, 2024. "Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data," Energies, MDPI, vol. 17(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouaziz, Mohamed Chahine & El Koundi, Mourad & Ennine, Ghaleb, 2024. "High-resolution solar panel detection in Sfax, Tunisia: A UNet-Based approach," Renewable Energy, Elsevier, vol. 235(C).
    2. Yang, Ruiqing & He, Guojin & Yin, Ranyu & Wang, Guizhou & Peng, Xueli & Zhang, Zhaoming & Long, Tengfei & Peng, Yan & Wang, Jianping, 2025. "A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge," Applied Energy, Elsevier, vol. 390(C).
    3. Rui Zhang & Ruikai Hong & Qiannan Li & Xu He & Age Shama & Jichao Lv & Renzhe Wu, 2025. "Optimizing PV Panel Segmentation in Complex Environments Using Pre-Training and Simulated Annealing Algorithm: The JSWPVI," Land, MDPI, vol. 14(6), pages 1-20, June.
    4. Guo, Zhiling & Zhuang, Zhan & Tan, Hongjun & Liu, Zhengguang & Li, Peiran & Lin, Zhengyuan & Shang, Wen-Long & Zhang, Haoran & Yan, Jinyue, 2023. "Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets," Renewable Energy, Elsevier, vol. 219(P1).
    5. Chen, Di & Peng, Qiuzhi & Lu, Jiating & Huang, Peiyi & Song, Yufei & Peng, Fengcan, 2024. "Classification and segmentation of five photovoltaic types based on instance segmentation for generating more refined photovoltaic data," Applied Energy, Elsevier, vol. 376(PB).
    6. Tan, Hongjun & Guo, Zhiling & Lin, Zhengyuan & Chen, Yuntian & Huang, Dou & Yuan, Wei & Zhang, Haoran & Yan, Jinyue, 2024. "General generative AI-based image augmentation method for robust rooftop PV segmentation," Applied Energy, Elsevier, vol. 368(C).
    7. Sadat, Seyyed Ali & Roy, Riya & Pearce, Joshua M., 2025. "Technical, economic and environmental potential of recycled polycarbonate solar photovoltaic frames," Renewable Energy, Elsevier, vol. 242(C).
    8. Xiao Ma & Yongchun Yang & Huazhang Zhu, 2025. "Spatiotemporal Characteristics and Influencing Factors of Renewable Energy Production Development in Ningxia Hui Autonomous Region, China (2014–2021)," Land, MDPI, vol. 14(4), pages 1-26, April.
    9. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    11. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Mapping of the Literal Regressive and Geospatial–Temporal Distribution of Solar Energy on a Short-Scale Measurement in Mozambique Using Machine Learning Techniques," Energies, MDPI, vol. 18(13), pages 1-55, June.
    12. Li, Hao & Ma, Gang & Wang, Bo & Wang, Shu & Li, Wenhao & Meng, Yuxiang, 2025. "Multi-modal feature fusion model based on TimesNet and T2T-ViT for ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 240(C).
    13. Shahryar Jafarinejad & Rebecca R. Hernandez & Sajjad Bigham & Bryan S. Beckingham, 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    14. Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
    15. Li, Jiyan & Long, Yong & Jing, Yanju & Zhang, Jiaqing & Du, Silu & Jiao, Rui & Sun, Hanxue & Zhu, Zhaoqi & Liang, Weidong & Li, An, 2024. "Superhydrophobic multi-shell hollow microsphere confined phase change materials for solar photothermal conversion and energy storage," Applied Energy, Elsevier, vol. 365(C).
    16. Borislav Stankov & Angel Terziev & Momchil Vassilev & Martin Ivanov, 2024. "Influence of Wind and Rainfall on the Performance of a Photovoltaic Module in a Dusty Environment," Energies, MDPI, vol. 17(14), pages 1-29, July.
    17. Farah Mneimneh & Hasan Ghazzawi & Seeram Ramakrishna, 2023. "Review Study of Energy Efficiency Measures in Favor of Reducing Carbon Footprint of Electricity and Power, Buildings, and Transportation," Circular Economy and Sustainability, Springer, vol. 3(1), pages 447-474, March.
    18. Xiao Xu & Teng Zhang & Ziwen Qiu & Hui Gao & Sanli Zhu, 2023. "A Method Based on NGO-HKELM for the Autonomous Diagnosis of Semiconductor Power Switch Open-Circuit Faults in Three-Phase Grid-Connected Photovoltaic Inverters," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    19. Xie, Yang & Zheng, Jianyong & Mei, Fei & Taylor, Gareth & Gao, Ang, 2025. "An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning," Applied Energy, Elsevier, vol. 385(C).
    20. Cardoso, Andressa & Jurado-Rodríguez, David & López, Alfonso & Ramos, M. Isabel & Jurado, Juan Manuel, 2024. "Automated detection and tracking of photovoltaic modules from 3D remote sensing data," Applied Energy, Elsevier, vol. 367(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.