IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022602.html
   My bibliography  Save this article

Multi-modal feature fusion model based on TimesNet and T2T-ViT for ultra-short-term solar irradiance forecasting

Author

Listed:
  • Li, Hao
  • Ma, Gang
  • Wang, Bo
  • Wang, Shu
  • Li, Wenhao
  • Meng, Yuxiang

Abstract

Solar power generation is considered a solution to meet global energy needs. Accurate solar energy prediction can provide a basis for the stable operation and economic dispatch of power systems. Although the solar irradiance prediction method based on historical data and sky images has been widely studied, the exploration of mining deep time series and image features and associating the two features for effective modeling is still limited. Therefore, this paper proposes a multi-modal feature learning model based on TimesNet and T2T-ViT for ultra-short-term solar irradiance prediction. Firstly, the historical sequence is transformed into a two-dimensional tensor using TimesNet, and the temporal features are extracted using two-dimensional convolution. Secondly, T2T-ViT is used to model the global information and local structure, and the deep image features are extracted. Finally, a feature fusion module based on Transformer is proposed. Image features enhance the temporal features, and the decoder is used to output the prediction results of the next six steps (1 h in advance, the prediction step is 10 min). The experimental results show that the proposed method has better prediction performance than other SOTA methods, and has good robustness in the whole prediction range.

Suggested Citation

  • Li, Hao & Ma, Gang & Wang, Bo & Wang, Shu & Li, Wenhao & Meng, Yuxiang, 2025. "Multi-modal feature fusion model based on TimesNet and T2T-ViT for ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022602
    DOI: 10.1016/j.renene.2024.122192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.