IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v342y2023ics030626192300524x.html
   My bibliography  Save this article

A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting

Author

Listed:
  • Liu, Jingxuan
  • Zang, Haixiang
  • Cheng, Lilin
  • Ding, Tao
  • Wei, Zhinong
  • Sun, Guoqiang

Abstract

The development of solar energy is crucial to combat the global climate change and fossil energy crisis. However, the inherent uncertainty of solar power prevents its large-scale integration into power grids. Although various sky-image-derived modeling methods exist to forecast the variations of solar irradiance, few focus on fully utilizing the coupling correlations between sky images and historical data to improve the forecasting performance. Therefore, a novel multimodal-learning framework is proposed for forecasting global horizontal irradiance (GHI) in the ultra-short-term. First, the historical and empirically estimated clear-sky GHI are encoded by Informer. Then, the ground-based sky images are transformed into optical flow maps, which can be handled by Vision Transformer. Subsequently, a cross-modality attention method is proposed to explore the coupling correlations between the two modalities. Last, a generative decoder is used to implement multi-step forecasting. The experimental results show that the proposed method achieves a normalized root mean square error (NRMSE) of 4.28% in 10-min-ahead forecasting. Several state-of-the-art methods are also used for comparisons. The experimental results show that the proposed method outperforms the benchmark methods and exhibits higher accuracy and robustness in ultra-short-term GHI forecasting.

Suggested Citation

  • Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
  • Handle: RePEc:eee:appene:v:342:y:2023:i:c:s030626192300524x
    DOI: 10.1016/j.apenergy.2023.121160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192300524X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nespoli, Alfredo & Niccolai, Alessandro & Ogliari, Emanuele & Perego, Giovanni & Collino, Elena & Ronzio, Dario, 2022. "Machine Learning techniques for solar irradiation nowcasting: Cloud type classification forecast through satellite data and imagery," Applied Energy, Elsevier, vol. 305(C).
    2. Zhang, Chu & Hua, Lei & Ji, Chunlei & Shahzad Nazir, Muhammad & Peng, Tian, 2022. "An evolutionary robust solar radiation prediction model based on WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine," Applied Energy, Elsevier, vol. 322(C).
    3. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    4. Rodríguez-Benítez, Francisco J. & López-Cuesta, Miguel & Arbizu-Barrena, Clara & Fernández-León, María M. & Pamos-Ureña, Miguel Á. & Tovar-Pescador, Joaquín & Santos-Alamillos, Francisco J. & Pozo-Váz, 2021. "Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery," Applied Energy, Elsevier, vol. 292(C).
    5. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    6. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    7. Puah, Boon Keat & Chong, Lee Wai & Wong, Yee Wan & Begam, K.M. & Khan, Nafizah & Juman, Mohammed Ayoub & Rajkumar, Rajprasad Kumar, 2021. "A regression unsupervised incremental learning algorithm for solar irradiance prediction," Renewable Energy, Elsevier, vol. 164(C), pages 908-925.
    8. Niu, Tong & Li, Jinkai & Wei, Wei & Yue, Hui, 2022. "A hybrid deep learning framework integrating feature selection and transfer learning for multi-step global horizontal irradiation forecasting," Applied Energy, Elsevier, vol. 326(C).
    9. Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
    10. Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
    11. Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
    12. Ren, Simiao & Hu, Wayne & Bradbury, Kyle & Harrison-Atlas, Dylan & Malaguzzi Valeri, Laura & Murray, Brian & Malof, Jordan M., 2022. "Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis," Applied Energy, Elsevier, vol. 326(C).
    13. Kamadinata, Jane Oktavia & Ken, Tan Lit & Suwa, Tohru, 2019. "Sky image-based solar irradiance prediction methodologies using artificial neural networks," Renewable Energy, Elsevier, vol. 134(C), pages 837-845.
    14. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    15. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yunxiao & Bai, Mingliang & Zhang, Yilan & Liu, Jinfu & Yu, Daren, 2023. "Proactively selection of input variables based on information gain factors for deep learning models in short-term solar irradiance forecasting," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
    2. Paletta, Quentin & Hu, Anthony & Arbod, Guillaume & Lasenby, Joan, 2022. "ECLIPSE: Envisioning CLoud Induced Perturbations in Solar Energy," Applied Energy, Elsevier, vol. 326(C).
    3. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    4. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    5. Eşlik, Ardan Hüseyin & Akarslan, Emre & Hocaoğlu, Fatih Onur, 2022. "Short-term solar radiation forecasting with a novel image processing-based deep learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 1490-1505.
    6. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    7. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
    8. Su, Qingyu & Chen, Cong & Huang, Xin & Li, Jian, 2022. "Interval TrendRank method for grid node importance assessment considering new energy," Applied Energy, Elsevier, vol. 324(C).
    9. Garcia, Dário & Liang, Dawei & Almeida, Joana & Catela, Miguel & Costa, Hugo & Tibúrcio, Bruno D. & Guillot, Emmanuel & Vistas, Cláudia R., 2023. "Lowest-threshold solar laser operation under cloudy sky condition," Renewable Energy, Elsevier, vol. 210(C), pages 127-133.
    10. Xinyu Yang & Ying Ji & Xiaoxia Wang & Menghan Niu & Shuijing Long & Jingchao Xie & Yuying Sun, 2023. "Simplified Method for Predicting Hourly Global Solar Radiation Using Extraterrestrial Radiation and Limited Weather Forecast Parameters," Energies, MDPI, vol. 16(7), pages 1-16, April.
    11. Logothetis, Stavros-Andreas & Salamalikis, Vasileios & Wilbert, Stefan & Remund, Jan & Zarzalejo, Luis F. & Xie, Yu & Nouri, Bijan & Ntavelis, Evangelos & Nou, Julien & Hendrikx, Niels & Visser, Lenna, 2022. "Benchmarking of solar irradiance nowcast performance derived from all-sky imagers," Renewable Energy, Elsevier, vol. 199(C), pages 246-261.
    12. Chen, Shanlin & Li, Chengxi & Xie, Yuying & Li, Mengying, 2023. "Global and direct solar irradiance estimation using deep learning and selected spectral satellite images," Applied Energy, Elsevier, vol. 352(C).
    13. Shitao Wang & Mingjian Sun & Yi Shen, 2022. "Semantic Segmentation Algorithm-Based Calculation of Cloud Shadow Trajectory and Cloud Speed," Energies, MDPI, vol. 15(23), pages 1-15, November.
    14. Wen-Chi Kuo & Chiun-Hsun Chen & Sih-Yu Chen & Chi-Chuan Wang, 2022. "Deep Learning Neural Networks for Short-Term PV Power Forecasting via Sky Image Method," Energies, MDPI, vol. 15(13), pages 1-17, June.
    15. Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2023. "Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach," Renewable Energy, Elsevier, vol. 216(C).
    16. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    17. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    18. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    19. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    20. Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:342:y:2023:i:c:s030626192300524x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.