Spatial–temporal multimodal fusion model for intra-hour solar power forecasting under variable weather conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2025.123043
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Paletta, Quentin & Hu, Anthony & Arbod, Guillaume & Lasenby, Joan, 2022. "ECLIPSE: Envisioning CLoud Induced Perturbations in Solar Energy," Applied Energy, Elsevier, vol. 326(C).
- Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2015. "A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance," Energy, Elsevier, vol. 82(C), pages 570-577.
- Huang, Xiaoqiao & Liu, Jun & Xu, Shaozhen & Li, Chengli & Li, Qiong & Tai, Yonghang, 2023. "A 3D ConvLSTM-CNN network based on multi-channel color extraction for ultra-short-term solar irradiance forecasting," Energy, Elsevier, vol. 272(C).
- Zhang, Chu & Hua, Lei & Ji, Chunlei & Shahzad Nazir, Muhammad & Peng, Tian, 2022. "An evolutionary robust solar radiation prediction model based on WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine," Applied Energy, Elsevier, vol. 322(C).
- Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
- Rodríguez-Benítez, Francisco J. & López-Cuesta, Miguel & Arbizu-Barrena, Clara & Fernández-León, María M. & Pamos-Ureña, Miguel Á. & Tovar-Pescador, Joaquín & Santos-Alamillos, Francisco J. & Pozo-Váz, 2021. "Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery," Applied Energy, Elsevier, vol. 292(C).
- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
- Marchesoni-Acland, Franco & Alonso-Suárez, Rodrigo, 2020. "Intra-day solar irradiation forecast using RLS filters and satellite images," Renewable Energy, Elsevier, vol. 161(C), pages 1140-1154.
- Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
- Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
- Trapero, Juan R. & Kourentzes, Nikolaos & Martin, A., 2015. "Short-term solar irradiation forecasting based on Dynamic Harmonic Regression," Energy, Elsevier, vol. 84(C), pages 289-295.
- Scott, Connor & Ahsan, Mominul & Albarbar, Alhussein, 2023. "Machine learning for forecasting a photovoltaic (PV) generation system," Energy, Elsevier, vol. 278(C).
- Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2023. "Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach," Renewable Energy, Elsevier, vol. 216(C).
- Lappalainen, Kari & Wang, Guang C. & Kleissl, Jan, 2020. "Estimation of the largest expected photovoltaic power ramp rates," Applied Energy, Elsevier, vol. 278(C).
- McCandless, T.C. & Haupt, S.E. & Young, G.S., 2016. "A regime-dependent artificial neural network technique for short-range solar irradiance forecasting," Renewable Energy, Elsevier, vol. 89(C), pages 351-359.
- Youngsung Kwon & Alexis Kwasinski & Andres Kwasinski, 2019. "Solar Irradiance Forecast Using Naïve Bayes Classifier Based on Publicly Available Weather Forecasting Variables," Energies, MDPI, vol. 12(8), pages 1-13, April.
- Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
- Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
- Barbieri, Florian & Rajakaruna, Sumedha & Ghosh, Arindam, 2017. "Very short-term photovoltaic power forecasting with cloud modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 242-263.
- Jonathan, Anto Leoba & Cai, Dongsheng & Ukwuoma, Chiagoziem C. & Nkou, Nkou Joseph Junior & Huang, Qi & Bamisile, Olusola, 2024. "A radiant shift: Attention-embedded CNNs for accurate solar irradiance forecasting and prediction from sky images," Renewable Energy, Elsevier, vol. 234(C).
- Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Hao & Ma, Gang & Wang, Bo & Wang, Shu & Li, Wenhao & Meng, Yuxiang, 2025. "Multi-modal feature fusion model based on TimesNet and T2T-ViT for ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 240(C).
- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
- Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
- Ukwuoma, Chiagoziem C. & Cai, Dongsheng & Bamisile, Olusola & Yin, Hongbo & Nneji, Grace Ugochi & Monday, Happy N. & Oluwasanmi, Ariyo & Huang, Qi, 2024. "An attention fused sequence -to-sequence convolutional neural network for accurate solar irradiance forecasting and prediction using sky images," Renewable Energy, Elsevier, vol. 237(PB).
- Nie, Yuhao & Paletta, Quentin & Scott, Andea & Pomares, Luis Martin & Arbod, Guillaume & Sgouridis, Sgouris & Lasenby, Joan & Brandt, Adam, 2024. "Sky image-based solar forecasting using deep learning with heterogeneous multi-location data: Dataset fusion versus transfer learning," Applied Energy, Elsevier, vol. 369(C).
- Guo, Su & Fan, Huiying & Huang, Jing, 2025. "Ultra-short-term PV power prediction based on an improved hybrid model with sky image features and data two-dimensional purification," Energy, Elsevier, vol. 331(C).
- Hanif, M.F. & Mi, J., 2024. "Harnessing AI for solar energy: Emergence of transformer models," Applied Energy, Elsevier, vol. 369(C).
- Xie, Qiyue & Ma, Lin & Liu, Yao & Fu, Qiang & Shen, Zhongli & Wang, Xiaoli, 2023. "An improved SSA-BiLSTM-based short-term irradiance prediction model via sky images feature extraction," Renewable Energy, Elsevier, vol. 219(P2).
- Paletta, Quentin & Hu, Anthony & Arbod, Guillaume & Lasenby, Joan, 2022. "ECLIPSE: Envisioning CLoud Induced Perturbations in Solar Energy," Applied Energy, Elsevier, vol. 326(C).
- Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
- Peña-Cruz, Manuel I. & Díaz-Ponce, Arturo & Sánchez-Segura, César D. & Valentín-Coronado, Luis & Moctezuma, Daniela, 2024. "Short-term forecast of solar irradiance components using an alternative mathematical approach for the identification of cloud features," Renewable Energy, Elsevier, vol. 237(PC).
- Zang, Haixiang & Li, Wenan & Cheng, Lilin & Liu, Jingxuan & Wei, Zhinong & Sun, Guoqiang, 2025. "Short-term multi-site solar irradiance prediction with dynamic-graph-convolution-based spatial-temporal correlation capturing," Renewable Energy, Elsevier, vol. 246(C).
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
- Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
- Verdone, Alessio & Panella, Massimo & De Santis, Enrico & Rizzi, Antonello, 2025. "A review of solar and wind energy forecasting: From single-site to multi-site paradigm," Applied Energy, Elsevier, vol. 392(C).
- Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
- Wang, Zheng & Peng, Tian & Zhang, Xuedong & Chen, Jialei & Qian, Shijie & Zhang, Chu, 2025. "Enhancing multi-step short-term solar radiation forecasting based on optimized generalized regularized extreme learning machine and multi-scale Gaussian data augmentation technique," Applied Energy, Elsevier, vol. 377(PD).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007050. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125007050.html