IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v392y2025ics0306261925007469.html
   My bibliography  Save this article

A review of solar and wind energy forecasting: From single-site to multi-site paradigm

Author

Listed:
  • Verdone, Alessio
  • Panella, Massimo
  • De Santis, Enrico
  • Rizzi, Antonello

Abstract

The energy sector is undergoing a radical transformation towards an electricity generation system composed mainly of renewable energy sources. Although they offer several advantages compared to fossil fuels (such as scarcity and import-dependency), their stochastic nature makes them unreliable without an adequate storage system. Since electrical networks are characterized by complex dynamics, numerous methods for predicting renewable electricity production have been developed over the years. Among them, machine learning and deep learning methods in this field can be considered successful tools. In this review, we offer an overview of the methodologies applied to the task of renewable energy source forecasting, focusing on solar and wind. We classified methods depending on the number of sites and spatio-temporal information involved in the prediction. Recent research has demonstrated how the processing of simultaneous information coming from multiple plants allows the predictive system to take advantage of both temporal and spatial knowledge of the plants generating the related time series. Moreover, we have analyzed in detail the datasets employed in these experiments, to offer a clear and unified view of the experimental setups and the difficulty in producing a benchmark to compare methods. The purpose of this review is to offer the reader an updated view of the most modern renewable energy forecasting systems by comparing methodologies and approaches used in state-of-the-art research and providing a critical analysis of them.

Suggested Citation

  • Verdone, Alessio & Panella, Massimo & De Santis, Enrico & Rizzi, Antonello, 2025. "A review of solar and wind energy forecasting: From single-site to multi-site paradigm," Applied Energy, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007469
    DOI: 10.1016/j.apenergy.2025.126016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.