IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007023.html
   My bibliography  Save this article

A novel dynamic spatio-temporal graph convolutional network for wind speed interval prediction

Author

Listed:
  • Chen, Zhengganzhe
  • Zhang, Bin
  • Du, Chenglong
  • Meng, Wei
  • Meng, Anbo

Abstract

It is crucial to predict the wind speed for the utilization of renewable wind energy and the operation of transmission lines with increased capacity. The intermittency and stochastic fluctuations of wind speed pose a significant challenge for the high-quality wind speed prediction, and a novel wind speed interval prediction (WSIP) model is constructed in this study by employing the residual estimation (RE)-oriented dynamic spatio-temporal graph convolutional network (DSTGCN) approach. Firstly, a dynamic adjacency matrix is designed to obtain time-varying global spatial weight allocations among each wind speed node. Then, the spatio-temporal features are extracted by using gated recurrent units (GRUs) and GCNs to construct the wind speed graph networks. Moreover, the RE-oriented strategy incorporating the pinball loss is designed to provide a guidance the parameter training of the constructed model, thus eliminating the quantile crossings problem. As a result, the deterministic point prediction of the wind speed is expanded to the quantile-based probabilistic interval prediction. Finally, the experimental results are presented to demonstrate the validity and superiority of proposed scheme in both qualitative and quantitative performance.

Suggested Citation

  • Chen, Zhengganzhe & Zhang, Bin & Du, Chenglong & Meng, Wei & Meng, Anbo, 2024. "A novel dynamic spatio-temporal graph convolutional network for wind speed interval prediction," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007023
    DOI: 10.1016/j.energy.2024.130930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.