IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225012587.html
   My bibliography  Save this article

Short-term offshore wind power multi-location multi-modal multi-step prediction model based on Informer (M3STIN)

Author

Listed:
  • Wang, Zhongrui
  • Wang, Chunbo
  • Chen, Liang
  • Yu, Min
  • Yuan, Wenteng

Abstract

In recent years, offshore wind power has become an important source of wind power generation. When large-scale offshore wind farms generate power in groups, the accuracy of wind power prediction is crucial for the stability of the system. This report focuses on multi-location multi-step spatio-temporal wind power prediction. It is designed to exploit spatial dependencies by the relative physical locations of offshore wind farms in order to improve prediction and generate forecasts for eight locations. This report proposes an Informer-based multi-location multi-modal multi-step prediction model (M3STIN). In this model, spatial correlation between offshore wind farms is considered using Pearson coefficient and the Gaussian kernel function. To address spatial and temporal dependencies, graph attention networks and Informer models are applied, respectively. Furthermore, the incorporation of multi-task learning with auxiliary tasks, along with the integration of multi-modal strategies, contributes to enhancing both accuracy and computational efficiency of the prediction model. To validate M3STIN, the model is compared with 10 benchmark models based on MAPE, MAE, R2, and computation time. The results demonstrate that the model achieves the lowest prediction error in multi-step short-term forecasting across all sites, highlighting its superior performance over existing models.

Suggested Citation

  • Wang, Zhongrui & Wang, Chunbo & Chen, Liang & Yu, Min & Yuan, Wenteng, 2025. "Short-term offshore wind power multi-location multi-modal multi-step prediction model based on Informer (M3STIN)," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012587
    DOI: 10.1016/j.energy.2025.135616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225012587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yi-Ming & Wang, Hao, 2023. "Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting," Energy, Elsevier, vol. 278(PA).
    2. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    3. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    4. Zhong, Mingwei & Fan, Jingmin & Luo, Jianqiang & Xiao, Xuanyi & He, Guanglin & Cai, Rui, 2024. "InfoCAVB-MemoryFormer: Forecasting of wind and photovoltaic power through the interaction of data reconstruction and data augmentation," Applied Energy, Elsevier, vol. 371(C).
    5. Oliver Grothe & Fabian Kächele & Mira Watermeyer, 2022. "Analyzing Europe’s Biggest Offshore Wind Farms: A Data Set with 40 Years of Hourly Wind Speeds and Electricity Production," Energies, MDPI, vol. 15(5), pages 1-24, February.
    6. Minan Tang & Wenjuan Wang & Jiandong Qiu & Detao Li & Linyuan Lei, 2022. "Active Power Cooperative Control for Wind Power Clusters with Multiple Temporal and Spatial Scales," Energies, MDPI, vol. 15(24), pages 1-21, December.
    7. Wang, Han & Han, Shuang & Liu, Yongqian & Yan, Jie & Li, Li, 2019. "Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system," Applied Energy, Elsevier, vol. 237(C), pages 1-10.
    8. Linlin Yu & Gaojun Meng & Giovanni Pau & Yao Wu & Yun Tang, 2023. "Research on Hierarchical Control Strategy of ESS in Distribution Based on GA-SVR Wind Power Forecasting," Energies, MDPI, vol. 16(4), pages 1-17, February.
    9. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
    10. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    11. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
    12. Zhao, Xin-gang & Ren, Ling-zhi, 2015. "Focus on the development of offshore wind power in China: Has the golden period come?," Renewable Energy, Elsevier, vol. 81(C), pages 644-657.
    13. Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
    14. Wang, Lei & He, Yigang, 2022. "M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions," Applied Energy, Elsevier, vol. 324(C).
    15. Che, Jinxing & Yuan, Fang & Deng, Dewen & Jiang, Zheyong, 2023. "Ultra-short-term probabilistic wind power forecasting with spatial-temporal multi-scale features and K-FSDW based weight," Applied Energy, Elsevier, vol. 331(C).
    16. Qiuhong Huang & Xiao Wang, 2022. "A Forecasting Model of Wind Power Based on IPSO–LSTM and Classified Fusion," Energies, MDPI, vol. 15(15), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
    2. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    3. Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
    4. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    5. Chen, Zhengganzhe & Zhang, Bin & Du, Chenglong & Meng, Wei & Meng, Anbo, 2024. "A novel dynamic spatio-temporal graph convolutional network for wind speed interval prediction," Energy, Elsevier, vol. 294(C).
    6. Wen-Chang Tsai & Chih-Ming Hong & Chia-Sheng Tu & Whei-Min Lin & Chiung-Hsing Chen, 2023. "A Review of Modern Wind Power Generation Forecasting Technologies," Sustainability, MDPI, vol. 15(14), pages 1-40, July.
    7. Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
    8. Chen, Xin & Ye, Xiaoling & Shi, Jian & Zhang, Yingchao & Xiong, Xiong, 2024. "A spatial transfer-based hybrid model for wind speed forecasting," Energy, Elsevier, vol. 313(C).
    9. Zang, Haixiang & Li, Wenan & Cheng, Lilin & Liu, Jingxuan & Wei, Zhinong & Sun, Guoqiang, 2025. "Short-term multi-site solar irradiance prediction with dynamic-graph-convolution-based spatial-temporal correlation capturing," Renewable Energy, Elsevier, vol. 246(C).
    10. Xing, Qianyi & Huang, Xiaojia & Wang, Kang & Wang, Jianzhou & Wang, Shuai, 2025. "MIG-EWPFS: An ensemble probabilistic wind speed forecasting system integrating multi-dimensional feature extraction, hybrid quantile regression, and Knee improved multi-objective optimization," Energy, Elsevier, vol. 324(C).
    11. Ye, Xiaoling & Liu, Chengcheng & Xiong, Xiong & Qi, Yinyi, 2025. "Recurrent attention encoder–decoder network for multi-step interval wind power prediction," Energy, Elsevier, vol. 315(C).
    12. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    13. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    14. Wang, Da & Yang, Mao & Zhang, Wei & Ma, Chenglian & Su, Xin, 2025. "Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining," Applied Energy, Elsevier, vol. 380(C).
    15. Wang, Yufeng & Yang, Zihan & Ma, Jianhua & Jin, Qun, 2024. "A wind speed forecasting framework for multiple turbines based on adaptive gate mechanism enhanced multi-graph attention networks," Applied Energy, Elsevier, vol. 372(C).
    16. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    17. Shi, Jian & Teh, Jiashen & Lai, Ching-Ming, 2025. "Wind power prediction based on improved self-attention mechanism combined with Bi-directional Temporal Convolutional Network," Energy, Elsevier, vol. 322(C).
    18. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    19. Liu, Tianhong & Qi, Shengli & Qiao, Xianzhu & Liu, Sixing, 2024. "A hybrid short-term wind power point-interval prediction model based on combination of improved preprocessing methods and entropy weighted GRU quantile regression network," Energy, Elsevier, vol. 288(C).
    20. Yin, Linfei & Ju, Linyi, 2025. "ShuffleTransformerMulti-headAttentionNet network for user load forecasting," Energy, Elsevier, vol. 322(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.