IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223030323.html
   My bibliography  Save this article

A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination

Author

Listed:
  • Zheng, Xidong
  • Bai, Feifei
  • Zeng, Ziyang
  • Jin, Tao

Abstract

The proper integration of wind power-driven grids relies heavily on a reliable balance between electricity production and demand. Therefore, accurate prediction is essential for planning and efficient operation of wind power systems to ensure their continuous supply. However, increasingly severe power quality disturbance (PQD) constantly disturbs this equilibrium, which affects the accuracy of wind power prediction to a large extent. For this purpose, this paper developed a novel optimization methodology to improve wind power prediction accuracy considering micro PQD dimension reduction and elimination for wind-storage integrated systems. A novel idea has been presented in this optimization methodology to eliminate the barrier of PQD and wind power prediction. In the micro aspect, a PQD dimension reduction and elimination strategy based on dynamic mode decomposition (DMD) and Wiener Filter (WF) is proposed to eliminate the autonomy of PQD. This elimination of autonomy allows the WF to get a higher signal-to-noise ratio (SNR). In the macro aspect, this paper takes PQD of different complexity into full consideration, and compares their effects on improving wind power prediction accuracy based on deep learning-based approaches. Through the experimental verification, it is confirmed that the proposed DMD-WF optimization method has demonstrated an effective dimension reduction and elimination of PQD. Moreover, it is found that the proposed PQD optimization method contributes to improve the deep learning-based prediction accuracy when PQD is more complex. The proposed methodology creates a novel perspective to improve the short-term wind power prediction accuracy, which provides a theoretical and methodological guidance for future development of large-scale integrated wind-storage systems.

Suggested Citation

  • Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030323
    DOI: 10.1016/j.energy.2023.129638
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.