IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp656-668.html

A new demand response management strategy considering renewable energy prediction and filtering technology

Author

Listed:
  • Zheng, Xidong
  • Bai, Feifei
  • Zhuang, Zhiyuan
  • Chen, Zixing
  • Jin, Tao

Abstract

Accurate prediction of renewable energy generation acts as a critical role which not only provides short-term power generation in the future, but also facilitates scheduling and pre-configuration of energy storage systems. More importantly, the power generation prediction is of great significance to the demand response management (DRM) of renewable energy to participate in the electricity spot market. Therefore, DRM helps improve the stability and reliability of renewable energy systems. This paper presents a novel prediction-smoothing based methodology to reduce and eliminate the influence caused by the uncertainty of renewable energy output. Firstly, the Whale Optimization Algorithm (WOA) is combined with Long Short-Term Memory (LSTM) to predict short-term wind power output. Then, the Hampel-Butterworth-SG filtering strategy with outlier regression and specific risk band elimination is introduced. After that, according to the short-term output forecast results, the scheduling and pre-configuration scheme of peak-filling type energy storage is developed. Finally, based on the predicted renewable energy output and electricity price, the dynamic changes of demand response (DR) are calculated based on Logistics function, optimistic response and pessimistic response factors. Through extensive case studies, it is demonstrated that the assessment deviations in different scenarios is less than 5%, which are 0.64% for Scenario 1 and 3.64% for Scenario 2, and no additional penalty is required at this time. In addition, the proposed Demand Response Load Adjustment Rate (DRLAR) help compare the differences between predicted and actual DR, which are DRLAR = 0.03% in Scenario 1 and DRLAR = 0.01% in Scenario 2. Users are able to adjust the DR dynamically according to the electricity price to realize the optimal scheduling of their renewable resources. The proposed methodology creates a special connection between DRM and renewable energy prediction, which provides a reliable reference for future work.

Suggested Citation

  • Zheng, Xidong & Bai, Feifei & Zhuang, Zhiyuan & Chen, Zixing & Jin, Tao, 2023. "A new demand response management strategy considering renewable energy prediction and filtering technology," Renewable Energy, Elsevier, vol. 211(C), pages 656-668.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:656-668
    DOI: 10.1016/j.renene.2023.04.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Qingyang & Sun, Feihu & Cai, Qiran & Liu, Li-Jing & Zhang, Kun & Liang, Qiao-Mei, 2022. "Assessment of the influence of demand-side responses on high-proportion renewable energy system: An evidence of Qinghai, China," Renewable Energy, Elsevier, vol. 190(C), pages 945-958.
    2. Ding, Yunfei & Chen, Zijun & Zhang, Hongwei & Wang, Xin & Guo, Ying, 2022. "A short-term wind power prediction model based on CEEMD and WOA-KELM," Renewable Energy, Elsevier, vol. 189(C), pages 188-198.
    3. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    4. Yin, Shi & Liu, Hui, 2022. "Wind power prediction based on outlier correction, ensemble reinforcement learning, and residual correction," Energy, Elsevier, vol. 250(C).
    5. Wu, Xiaomin & Cao, Weihua & Wang, Dianhong & Ding, Min & Yu, Liangjun & Nakanishi, Yosuke, 2021. "Demand response model based on improved Pareto optimum considering seasonal electricity prices for Dongfushan Island," Renewable Energy, Elsevier, vol. 164(C), pages 926-936.
    6. Sasser, Christiana & Yu, Meilin & Delgado, Ruben, 2022. "Improvement of wind power prediction from meteorological characterization with machine learning models," Renewable Energy, Elsevier, vol. 183(C), pages 491-501.
    7. Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
    8. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xidong & Chen, Huangbin & Jin, Tao, 2024. "A new optimization approach considering demand response management and multistage energy storage: A novel perspective for Fujian Province," Renewable Energy, Elsevier, vol. 220(C).
    2. Xu, Mengjie & Li, Qianwen & Zhao, Zhengtang & Sun, Chuanwang, 2024. "Bilinear-DRTFT: Uncertainty prediction in electricity load considering multiple demand responses," Energy, Elsevier, vol. 309(C).
    3. Qinyu Huang & Zhenli Tang & Xiaofeng Weng & Min He & Fang Liu & Mingfa Yang & Tao Jin, 2024. "A Novel Electricity Theft Detection Strategy Based on Dual-Time Feature Fusion and Deep Learning Methods," Energies, MDPI, vol. 17(2), pages 1-18, January.
    4. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    5. Yin Chen & Zhenli Tang & Xiaofeng Weng & Min He & Guanghong Zhang & Ding Yuan & Tao Jin, 2024. "A Novel Approach for Evaluating Power Quality in Distributed Power Distribution Networks Using AHP and S-Transform," Energies, MDPI, vol. 17(2), pages 1-20, January.
    6. Liu, Tianhao & Shan, Linke & Jiang, Meihui & Li, Fangning & Kong, Fannie & Du, Pengcheng & Zhu, Hongyu & Goh, Hui Hwang & Kurniawan, Tonni Agustiono & Huang, Chao & Zhang, Dongdong, 2025. "Multi-dimensional data processing and intelligent forecasting technologies for renewable energy generation," Applied Energy, Elsevier, vol. 398(C).
    7. Moon-Jong Jang & Eunsung Oh, 2024. "Deep-Reinforcement-Learning-Based Vehicle-to-Grid Operation Strategies for Managing Solar Power Generation Forecast Errors," Sustainability, MDPI, vol. 16(9), pages 1-18, May.
    8. Xu, Yuzhen & Huang, Xin & Zheng, Xidong & Zeng, Ziyang & Jin, Tao, 2024. "VMD-ATT-LSTM electricity price prediction based on grey wolf optimization algorithm in electricity markets considering renewable energy," Renewable Energy, Elsevier, vol. 236(C).
    9. Bashir, Tasarruf & Wang, Huifang & Tahir, Mustafa & Zhang, Yixiang, 2025. "Wind and solar power forecasting based on hybrid CNN-ABiLSTM, CNN-transformer-MLP models," Renewable Energy, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    2. Gao, JiaJing & Xing, HongMei & Wang, YongSheng & Liu, GuangChen & Cheng, Bo & Zhang, DeLong, 2025. "Ultra-short-term wind power prediction based on hybrid denoising with improved CEEMD decomposition," Renewable Energy, Elsevier, vol. 251(C).
    3. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    4. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    5. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    6. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
    7. Yang, Mao & Wang, Da & Zhang, Wei, 2024. "A novel ultra short-term wind power prediction model based on double model coordination switching mechanism," Energy, Elsevier, vol. 289(C).
    8. Xiaoshuang Huang & Yinbao Zhang & Jianzhong Liu & Xinjia Zhang & Sicong Liu, 2023. "A Short-Term Wind Power Forecasting Model Based on 3D Convolutional Neural Network–Gated Recurrent Unit," Sustainability, MDPI, vol. 15(19), pages 1-13, September.
    9. Zheng, Xidong & Zhou, Sheng & Jin, Tao, 2023. "A new machine learning-based approach for cross-region coupled wind-storage integrated systems identification considering electricity demand response and data integration: A new provincial perspective," Energy, Elsevier, vol. 283(C).
    10. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    11. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    12. Wu, Zhenlong & Fan, Xinyu & Bian, Guibin & Liu, Yanhong & Zhang, Xiaoke & Chen, YangQuan, 2025. "Short-term wind power forecast with turning weather based on DBSCAN-RFE-LightGBM," Renewable Energy, Elsevier, vol. 251(C).
    13. Xiong, Jinlin & Peng, Tian & Tao, Zihan & Zhang, Chu & Song, Shihao & Nazir, Muhammad Shahzad, 2023. "A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction," Energy, Elsevier, vol. 266(C).
    14. Lu, Peng & Ye, Lin & Tang, Yong & Zhao, Yongning & Zhong, Wuzhi & Qu, Ying & Zhai, Bingxu, 2021. "Ultra-short-term combined prediction approach based on kernel function switch mechanism," Renewable Energy, Elsevier, vol. 164(C), pages 842-866.
    15. Xuehui Wang & Yongsheng Wang & Yongsheng Qi & Jiajing Gao & Fan Yang & Jiaxuan Lu, 2025. "An Ultra-Short-Term Wind Power Prediction Method Based on the Fusion of Multiple Technical Indicators and the XGBoost Algorithm," Energies, MDPI, vol. 18(12), pages 1-21, June.
    16. Li, Tian & Ai, Lijuan & Yang, Qingshan & Zhang, Xingxin & Li, Hang & Lu, Dawei & Shen, Hongtao, 2025. "Short-term wind power prediction based on multiscale numerical simulation coupled with deep learning," Renewable Energy, Elsevier, vol. 246(C).
    17. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    18. Yonghui Duan & Xiaotong Zhang & Xiang Wang & Yingying Fan & Kaige Liu, 2025. "A Novel Forecasting System with Data Preprocessing and Machine Learning for Containerized Freight Market," Mathematics, MDPI, vol. 13(10), pages 1-22, May.
    19. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    20. Ding, Jun-Wei & Chuang, Ming-Ju & Tseng, Jing-Siou & Hsieh, I-Yun Lisa, 2024. "Reanalysis and Ground Station data: Advanced data preprocessing in deep learning for wind power prediction," Applied Energy, Elsevier, vol. 375(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:656-668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.