IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5383-d1194276.html
   My bibliography  Save this article

Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey

Author

Listed:
  • Sabarathinam Srinivasan

    (Laboratory of Complex Systems Modelling and Control, Faculty of Computer Science, HSE, National Research University, Moscow 109028, Russia)

  • Suresh Kumarasamy

    (Centre for Computational Modeling, Chennai Institute of Technology, Chennai 600069, India)

  • Zacharias E. Andreadakis

    (Faculty of Technology, Art and Design, OsloMet—Oslo Metropolitan University, N-0130 Oslo, Norway)

  • Pedro G. Lind

    (Department of Computer Science, OsloMet—Oslo Metropolitan University, N-0130 Oslo, Norway
    Artificial Intelligence Lab, OsloMet—Oslo Metropolitan University, N-0166 Oslo, Norway
    NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Pilestredet 52, N-0166 Oslo, Norway)

Abstract

To face the impact of climate change in all dimensions of our society in the near future, the European Union (EU) has established an ambitious target. Until 2050, the share of renewable power shall increase up to 75% of all power injected into nowadays’ power grids. While being clean and having become significantly cheaper, renewable energy sources (RES) still present an important disadvantage compared to conventional sources. They show strong fluctuations, which introduce significant uncertainties when predicting the global power outcome and confound the causes and mechanisms underlying the phenomena in the grid, such as blackouts, extreme events, and amplitude death. To properly understand the nature of these fluctuations and model them is one of the key challenges in future energy research worldwide. This review collects some of the most important and recent approaches to model and assess the behavior of power grids driven by renewable energy sources. The goal of this survey is to draw a map to facilitate the different stakeholders and power grid researchers to navigate through some of the most recent advances in this field. We present some of the main research questions underlying power grid functioning and monitoring, as well as the main modeling approaches. These models can be classified as AI- or mathematically inspired models and include dynamical systems, Bayesian inference, stochastic differential equations, machine learning methods, deep learning, reinforcement learning, and reservoir computing. The content is aimed at the broad audience potentially interested in this topic, including academic researchers, engineers, public policy, and decision-makers. Additionally, we also provide an overview of the main repositories and open sources of power grid data and related data sets, including wind speed measurements and other geophysical data.

Suggested Citation

  • Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5383-:d:1194276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    2. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Berryhill, Benjamin & Yazdani, Alireza, 2016. "Characterizing the topological and controllability features of U.S. power transmission networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 84-98.
    3. Sun, Mei & Wang, Xiaofang & Chen, Ying & Tian, Lixin, 2011. "Energy resources demand-supply system analysis and empirical research based on non-linear approach," Energy, Elsevier, vol. 36(9), pages 5460-5465.
    4. Manenti, Flavio & Ravaghi-Ardebili, Zohreh, 2013. "Dynamic simulation of concentrating solar power plant and two-tanks direct thermal energy storage," Energy, Elsevier, vol. 55(C), pages 89-97.
    5. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    6. Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
    7. E. B. Iversen & J. M. Morales & J. K. Møller & H. Madsen, 2014. "Probabilistic forecasts of solar irradiance using stochastic differential equations," Environmetrics, John Wiley & Sons, Ltd., vol. 25(3), pages 152-164, May.
    8. Meka, Rajitha & Alaeddini, Adel & Bhaganagar, Kiran, 2021. "A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables," Energy, Elsevier, vol. 221(C).
    9. Li, Gong & Shi, Jing, 2012. "Agent-based modeling for trading wind power with uncertainty in the day-ahead wholesale electricity markets of single-sided auctions," Applied Energy, Elsevier, vol. 99(C), pages 13-22.
    10. Zhong, Shengyuan & Wang, Xiaoyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Wang, Yongzhen & Deng, Shuai & Zhu, Jiebei, 2021. "Deep reinforcement learning framework for dynamic pricing demand response of regenerative electric heating," Applied Energy, Elsevier, vol. 288(C).
    11. Wei Yu & Baogui Xin, 2013. "Governance Mechanism for Global Greenhouse Gas Emissions: A Stochastic Differential Game Approach," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-13, May.
    12. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    13. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    14. Bhattacharya, S.C. & Jana, Chinmoy, 2009. "Renewable energy in India: Historical developments and prospects," Energy, Elsevier, vol. 34(8), pages 981-991.
    15. Gaston Clément Nyassoke Titi & Jules Sadefo Kamdem & Louis Aimé Fono, 2022. "Optimal renewable resource harvesting model using price and biomass stochastic variations: a utility based approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 297-326, April.
    16. Yin, Shi & Liu, Hui, 2022. "Wind power prediction based on outlier correction, ensemble reinforcement learning, and residual correction," Energy, Elsevier, vol. 250(C).
    17. Wang, Jianxing & Guo, Lili & Zhang, Chengying & Song, Lei & Duan, Jiangyong & Duan, Liqiang, 2020. "Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method," Energy, Elsevier, vol. 208(C).
    18. Alfredo Burlando, 2014. "Power Outages, Power Externalities, and Baby Booms," Demography, Springer;Population Association of America (PAA), vol. 51(4), pages 1477-1500, August.
    19. Hongsheng Su & Dantong Wang & Xuping Duan, 2020. "Condition Maintenance Decision of Wind Turbine Gearbox Based on Stochastic Differential Equation," Energies, MDPI, vol. 13(17), pages 1-13, August.
    20. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    21. Sasser, Christiana & Yu, Meilin & Delgado, Ruben, 2022. "Improvement of wind power prediction from meteorological characterization with machine learning models," Renewable Energy, Elsevier, vol. 183(C), pages 491-501.
    22. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    23. Pedro G. Lind & Luis Vera-Tudela & Matthias Wächter & Martin Kühn & Joachim Peinke, 2017. "Normal Behaviour Models for Wind Turbine Vibrations: Comparison of Neural Networks and a Stochastic Approach," Energies, MDPI, vol. 10(12), pages 1-14, November.
    24. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Lu, Longxi & He, Yu, 2017. "The effect of energy construction adjustment on the dynamical evolution of energy-saving and emission-reduction system in China," Applied Energy, Elsevier, vol. 196(C), pages 180-189.
    25. Akai, Makoto & Nomura, Noboru & Waku, Hideki & Inoue, Masanori, 1997. "Life-cycle analysis of a fossil-fuel power plant with CO2 recovery and a sequestering system," Energy, Elsevier, vol. 22(2), pages 249-255.
    26. Xing, Jiangkuan & Luo, Kun & Wang, Haiou & Gao, Zhengwei & Fan, Jianren, 2019. "A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches," Energy, Elsevier, vol. 188(C).
    27. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    28. Zárate-Miñano, Rafael & Anghel, Marian & Milano, Federico, 2013. "Continuous wind speed models based on stochastic differential equations," Applied Energy, Elsevier, vol. 104(C), pages 42-49.
    29. Raccanello, J. & Rech, S. & Lazzaretto, A., 2019. "Simplified dynamic modeling of single-tank thermal energy storage systems," Energy, Elsevier, vol. 182(C), pages 1154-1172.
    30. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    31. Shang, Yuwei & Wu, Wenchuan & Guo, Jianbo & Ma, Zhao & Sheng, Wanxing & Lv, Zhe & Fu, Chenran, 2020. "Stochastic dispatch of energy storage in microgrids: An augmented reinforcement learning approach," Applied Energy, Elsevier, vol. 261(C).
    32. Li, Chaoshun & Tang, Geng & Xue, Xiaoming & Chen, Xinbiao & Wang, Ruoheng & Zhang, Chu, 2020. "The short-term interval prediction of wind power using the deep learning model with gradient descend optimization," Renewable Energy, Elsevier, vol. 155(C), pages 197-211.
    33. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "Reinforcement Learning for proactive operation of residential energy systems by learning stochastic occupant behavior and fluctuating solar energy: Balancing comfort, hygiene and energy use," Applied Energy, Elsevier, vol. 318(C).
    34. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    35. Huifeng Zhang & Xiaohui Lei & Chao Wang & Dong Yue & Xiangpeng Xie, 2017. "Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-25, September.
    36. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Namje Park, 2020. "Machine Learning Based Hybrid System for Imputation and Efficient Energy Demand Forecasting," Energies, MDPI, vol. 13(11), pages 1-23, May.
    37. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    38. Georgilakis, Pavlos S., 2008. "Technical challenges associated with the integration of wind power into power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 852-863, April.
    39. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    40. Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
    41. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    42. Fang, Guochang & Tian, Lixin & Sun, Mei & Fu, Min, 2012. "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system," Energy, Elsevier, vol. 40(1), pages 291-299.
    43. Azzolin, Alberto & Dueñas-Osorio, Leonardo & Cadini, Francesco & Zio, Enrico, 2018. "Electrical and topological drivers of the cascading failure dynamics in power transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 196-206.
    44. Yin, Linfei & Qiu, Yao, 2022. "Long-term price guidance mechanism of flexible energy service providers based on stochastic differential methods," Energy, Elsevier, vol. 238(PB).
    45. Lucas Cuadra & Miguel Del Pino & José Carlos Nieto-Borge & Sancho Salcedo-Sanz, 2017. "Optimizing the Structure of Distribution Smart Grids with Renewable Generation against Abnormal Conditions: A Complex Networks Approach with Evolutionary Algorithms," Energies, MDPI, vol. 10(8), pages 1-31, July.
    46. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua & Hua, Ke Qian, 2010. "Attack structural vulnerability of power grids: A hybrid approach based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 595-603.
    47. Shabani, Nazanin & Sowlati, Taraneh & Ouhimmou, Mustapha & Rönnqvist, Mikael, 2014. "Tactical supply chain planning for a forest biomass power plant under supply uncertainty," Energy, Elsevier, vol. 78(C), pages 346-355.
    48. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    49. Leerbeck, Kenneth & Bacher, Peder & Junker, Rune Grønborg & Goranović, Goran & Corradi, Olivier & Ebrahimy, Razgar & Tveit, Anna & Madsen, Henrik, 2020. "Short-term forecasting of CO2 emission intensity in power grids by machine learning," Applied Energy, Elsevier, vol. 277(C).
    50. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    51. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    52. Helmke-Long, Laura & Carley, Sanya & Konisky, David M., 2022. "Municipal government adaptive capacity programs for vulnerable populations during the U.S. energy transition," Energy Policy, Elsevier, vol. 167(C).
    53. Ramadhan, Raden A.A. & Heatubun, Yosca R.J. & Tan, Sek F. & Lee, Hyun-Jin, 2021. "Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power," Renewable Energy, Elsevier, vol. 178(C), pages 1006-1019.
    54. Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).
    55. Ran Wei & Qirui Gan & Huiquan Wang & Yue You & Xin Dang, 2020. "Short-term multiple power type prediction based on deep learning," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(4), pages 835-841, August.
    56. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    57. Topcu, Mert & Tugcu, Can Tansel, 2020. "The impact of renewable energy consumption on income inequality: Evidence from developed countries," Renewable Energy, Elsevier, vol. 151(C), pages 1134-1140.
    58. Benjamin Schäfer & Christian Beck & Kazuyuki Aihara & Dirk Witthaut & Marc Timme, 2018. "Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics," Nature Energy, Nature, vol. 3(2), pages 119-126, February.
    59. Vitor V. Lopes & Teresa Scholz & Frank Raischel & Pedro G. Lind, 2014. "Principal wind turbines for a conditional portfolio approach to wind farms," Papers 1404.0375, arXiv.org.
    60. Chaabene, M. & Annabi, M., 1997. "A dynamic model for predicting solar plant performance and optimum control," Energy, Elsevier, vol. 22(6), pages 567-578.
    61. du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).
    62. Pallonetto, Fabiano & De Rosa, Mattia & Milano, Federico & Finn, Donal P., 2019. "Demand response algorithms for smart-grid ready residential buildings using machine learning models," Applied Energy, Elsevier, vol. 239(C), pages 1265-1282.
    63. Sun, Mei & Tian, Lixin & Fu, Ying, 2007. "An energy resources demand–supply system and its dynamical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 168-180.
    64. Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).
    65. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, June.
    66. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    67. Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
    68. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    69. Dorado-Moreno, M. & Cornejo-Bueno, L. & Gutiérrez, P.A. & Prieto, L. & Hervás-Martínez, C. & Salcedo-Sanz, S., 2017. "Robust estimation of wind power ramp events with reservoir computing," Renewable Energy, Elsevier, vol. 111(C), pages 428-437.
    70. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    71. Klass, Donald L., 2003. "A critical assessment of renewable energy usage in the USA," Energy Policy, Elsevier, vol. 31(4), pages 353-367, March.
    72. Bird, Trevor J. & Jain, Neera, 2020. "Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage," Applied Energy, Elsevier, vol. 271(C).
    73. Pillai, Indu R. & Banerjee, Rangan, 2009. "Renewable energy in India: Status and potential," Energy, Elsevier, vol. 34(8), pages 970-980.
    74. Azhar Ahmed Mohammed & Zeyar Aung, 2016. "Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation," Energies, MDPI, vol. 9(12), pages 1-17, December.
    75. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    76. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    77. Spinti, Jennifer P. & Smith, Philip J. & Smith, Sean T., 2022. "Atikokan Digital Twin: Machine learning in a biomass energy system," Applied Energy, Elsevier, vol. 310(C).
    78. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    79. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    80. Kartal, Furkan & Özveren, Uğur, 2020. "A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®," Energy, Elsevier, vol. 209(C).
    81. Jaeyong An & P. R. Kumar & Le Xie, 2016. "Dynamic Modeling of Price Responsive Demand in Real-time Electricity Market: Empirical Analysis," Papers 1612.05021, arXiv.org.
    82. Berrada, Asmae & Loudiyi, Khalid & Garde, Raquel, 2017. "Dynamic modeling of gravity energy storage coupled with a PV energy plant," Energy, Elsevier, vol. 134(C), pages 323-335.
    83. Müller, Gernot & Seibert, Armin, 2019. "Bayesian estimation of stable CARMA spot models for electricity prices," Energy Economics, Elsevier, vol. 78(C), pages 267-277.
    84. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    85. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    86. Wei Dong & Qiang Yang & Xinli Fang, 2018. "Multi-Step Ahead Wind Power Generation Prediction Based on Hybrid Machine Learning Techniques," Energies, MDPI, vol. 11(8), pages 1-19, July.
    87. Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    88. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico & Ault, Graham & Bell, Keith, 2013. "Reinforcement learning for microgrid energy management," Energy, Elsevier, vol. 59(C), pages 133-146.
    89. Loukatou, Angeliki & Howell, Sydney & Johnson, Paul & Duck, Peter, 2018. "Stochastic wind speed modelling for estimation of expected wind power output," Applied Energy, Elsevier, vol. 228(C), pages 1328-1340.
    90. Daniele Gallo & Carmine Landi & Mario Luiso & Rosario Morello, 2013. "Optimization of Experimental Model Parameter Identification for Energy Storage Systems," Energies, MDPI, vol. 6(9), pages 1-19, September.
    91. Fouquet, Doerte & Johansson, Thomas B., 2008. "European renewable energy policy at crossroads--Focus on electricity support mechanisms," Energy Policy, Elsevier, vol. 36(11), pages 4079-4092, November.
    92. Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Author Correction: Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    93. Channing Arndt & Doug Arent & Faaiqa Hartley & Bruno Merven & Alam Hossain Mondal, 2019. "Faster Than You Think: Renewable Energy and Developing Countries," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 149-168, October.
    94. El Manaa Barhoumi & Ikram Ben Belgacem & Abla Khiareddine & Manaf Zghaibeh & Iskander Tlili, 2018. "A Neural Network-Based Four Phases Interleaved Boost Converter for Fuel Cell System Applications," Energies, MDPI, vol. 11(12), pages 1-18, December.
    95. Landsberg, Peter T., 1977. "A simple model for solar energy economics in the U.K," Energy, Elsevier, vol. 2(2), pages 149-159.
    96. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    97. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    98. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    99. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    100. Ochoa, Patricia & van Ackere, Ann, 2009. "Policy changes and the dynamics of capacity expansion in the Swiss electricity market," Energy Policy, Elsevier, vol. 37(5), pages 1983-1998, May.
    101. Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    102. Hao, Yan & Tian, Chengshi, 2019. "A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 238(C), pages 368-383.
    103. Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
    104. Mariam Ibrahim & Ahmad Alsheikh & Feras M. Awaysheh & Mohammad Dahman Alshehri, 2022. "Machine Learning Schemes for Anomaly Detection in Solar Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, February.
    105. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    106. Duan, Huiming & Liu, Yunmei & Wang, Guan, 2022. "A novel dynamic time-delay grey model of energy prices and its application in crude oil price forecasting," Energy, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    2. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    4. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    5. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    8. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    9. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    10. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    11. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    12. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    14. Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
    15. Eduardo J. Salazar & Mauro Jurado & Mauricio E. Samper, 2023. "Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    16. Dania Ortiz & Vera Migueis & Vitor Leal & Janelle Knox-Hayes & Jungwoo Chun, 2022. "Analysis of Renewable Energy Policies through Decision Trees," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    17. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    18. Arenas-López, J. Pablo & Badaoui, Mohamed, 2020. "Stochastic modelling of wind speeds based on turbulence intensity," Renewable Energy, Elsevier, vol. 155(C), pages 10-22.
    19. Wang, Lin & Tao, Rui & Hu, Huanling & Zeng, Yu-Rong, 2021. "Effective wind power prediction using novel deep learning network: Stacked independently recurrent autoencoder," Renewable Energy, Elsevier, vol. 164(C), pages 642-655.
    20. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5383-:d:1194276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.