IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v134y2017icp323-335.html
   My bibliography  Save this article

Dynamic modeling of gravity energy storage coupled with a PV energy plant

Author

Listed:
  • Berrada, Asmae
  • Loudiyi, Khalid
  • Garde, Raquel

Abstract

The growing interest in renewable energy systems has led to the development of energy storage to overcome their inherent intermittency. Currently, the most used storage technology for large scales systems is pumped hydro energy storage. This system is recognized for its economic viability in large scale applications. Another new alternative for large-scale energy storage is gravity storage system. The dynamic behavior of gravity storage including the mechanical machines and the hydraulic storage components is analyzed to gain insight into the performance of this system. An analytical model has been developed through interconnection of the different plant equipment models using Matlab/Simulink application. This paper details the operation modeling of a hybrid renewable energy system. The proposed model is able to simulate the interaction between the power plant, the storage system, and the electric grid. To evaluate the performance of the Simulink model, a simulation study is carried out on a large scale system.

Suggested Citation

  • Berrada, Asmae & Loudiyi, Khalid & Garde, Raquel, 2017. "Dynamic modeling of gravity energy storage coupled with a PV energy plant," Energy, Elsevier, vol. 134(C), pages 323-335.
  • Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:323-335
    DOI: 10.1016/j.energy.2017.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421731023X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Jiahui & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Lai, Xiaokang & Yuan, Weijia, 2013. "Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid," Energy, Elsevier, vol. 51(C), pages 184-192.
    2. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    3. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    4. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    5. Wu, Jing & Tremeac, Brice & Terrier, Marie-France & Charni, Mehdi & Gagnière, Emilie & Couenne, Françoise & Hamroun, Boussad & Jallut, Christian, 2016. "Experimental investigation of the dynamic behavior of a large-scale refrigeration – PCM energy storage system. Validation of a complete model," Energy, Elsevier, vol. 116(P1), pages 32-42.
    6. Zhu, H. & Huang, W.W. & Huang, G.H., 2014. "Planning of regional energy systems: An inexact mixed-integer fractional programming model," Applied Energy, Elsevier, vol. 113(C), pages 500-514.
    7. Saadat, Mohsen & Shirazi, Farzad A. & Li, Perry Y., 2015. "Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines," Applied Energy, Elsevier, vol. 137(C), pages 603-616.
    8. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    9. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2017. "Profitability, risk, and financial modeling of energy storage in residential and large scale applications," Energy, Elsevier, vol. 119(C), pages 94-109.
    10. Yun Zeng & Yakun Guo & Lixiang Zhang & Tianmao Xu & Hongkui Dong, 2013. "Nonlinear hydro turbine model having a surge tank," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(1), pages 12-28.
    11. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    12. Arabkoohsar, A. & Andresen, G.B., 2017. "Dynamic energy, exergy and market modeling of a High Temperature Heat and Power Storage System," Energy, Elsevier, vol. 126(C), pages 430-443.
    13. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "The role of demand-side management in the grid integration of wind power," Applied Energy, Elsevier, vol. 87(8), pages 2581-2588, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    3. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Ren, Dawei & Xu, GuiZhi & Han, Minxiao, 2024. "Typical unit capacity configuration strategies and their control methods of modular gravity energy storage plants," Energy, Elsevier, vol. 295(C).
    4. Wang, Xuewei & Wang, Jing & Wang, Lin & Yuan, Ruiming, 2019. "Non-overlapping moving compressive measurement algorithm for electrical energy estimation of distorted m-sequence dynamic test signal," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    6. Berrada, Asmae, 2022. "Financial and economic modeling of large-scale gravity energy storage system," Renewable Energy, Elsevier, vol. 192(C), pages 405-419.
    7. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    8. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    9. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    2. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & López-Rey, África, 2018. "Technical approach for the inclusion of superconducting magnetic energy storage in a smart city," Energy, Elsevier, vol. 158(C), pages 1080-1091.
    3. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    4. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    5. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    6. Arabkoohsar, A. & Andresen, G.B., 2017. "Thermodynamics and economic performance comparison of three high-temperature hot rock cavern based energy storage concepts," Energy, Elsevier, vol. 132(C), pages 12-21.
    7. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    8. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    9. Ayotunde A. Adeyemo & Elisabetta Tedeschi, 2023. "Technology Suitability Assessment of Battery Energy Storage System for High-Energy Applications on Offshore Oil and Gas Platforms," Energies, MDPI, vol. 16(18), pages 1-38, September.
    10. Gao, Dan & Jiang, Dongfang & Liu, Pei & Li, Zheng & Hu, Sangao & Xu, Hong, 2014. "An integrated energy storage system based on hydrogen storage: Process configuration and case studies with wind power," Energy, Elsevier, vol. 66(C), pages 332-341.
    11. Morabito, Alessandro & Hendrick, Patrick, 2019. "Pump as turbine applied to micro energy storage and smart water grids: A case study," Applied Energy, Elsevier, vol. 241(C), pages 567-579.
    12. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2017. "Profitability, risk, and financial modeling of energy storage in residential and large scale applications," Energy, Elsevier, vol. 119(C), pages 94-109.
    13. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    14. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    15. Kapila, Sahil & Oni, Abayomi Olufemi & Kumar, Amit, 2017. "The development of techno-economic models for large-scale energy storage systems," Energy, Elsevier, vol. 140(P1), pages 656-672.
    16. Settino, Jessica & Sant, Tonio & Micallef, Christopher & Farrugia, Mario & Spiteri Staines, Cyril & Licari, John & Micallef, Alexander, 2018. "Overview of solar technologies for electricity, heating and cooling production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 892-909.
    17. Arenas, Luis F. & Loh, Adeline & Trudgeon, David P. & Li, Xiaohong & Ponce de León, Carlos & Walsh, Frank C., 2018. "The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 992-1016.
    18. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    19. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    20. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:134:y:2017:i:c:p:323-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.