IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i3p815-826.html
   My bibliography  Save this article

Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology

Author

Listed:
  • Li, Chun-Hua
  • Zhu, Xin-Jian
  • Cao, Guang-Yi
  • Sui, Sheng
  • Hu, Ming-Ruo

Abstract

Economic and environmental concerns over fossil fuels encourage the development of photovoltaic (PV) energy systems. Due to the intermittent nature of solar energy, energy storage is needed in a stand-alone PV system for the purpose of ensuring continuous power flow. Three stand-alone photovoltaic power systems using different energy storage technologies are studied in this paper. Key components including PV modules, fuel cells, electrolyzers, compressors, hydrogen tanks and batteries are modeled in a clear way so as to facilitate the evaluation of the power systems. Based on energy storage technology, a method of ascertaining minimal system configuration is designed to perform the sizing optimization and reveal the correlations between the system cost and the system efficiency. The three hybrid power systems, i.e., photovoltaic/battery (PV/Battery) system, photovoltaic/fuel cell (PV/FC) system, and photovoltaic/fuel cell/battery (PV/FC/Battery) system, are optimized, analyzed and compared. The obtained results indicate that maximizing the system efficiency while minimizing system cost is a multi-objective optimization problem. As a trade-off solution to the problem, the proposed PV/FC/Battery hybrid system is found to be the configuration with lower cost, higher efficiency and less PV modules as compared with either single storage system.

Suggested Citation

  • Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:3:p:815-826
    DOI: 10.1016/j.renene.2008.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108001523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santarelli, M. & Pellegrino, D., 2005. "Mathematical optimization of a RES-H2 plant using a black box algorithm," Renewable Energy, Elsevier, vol. 30(4), pages 493-510.
    2. Beccali, M. & Brunone, S. & Cellura, M. & Franzitta, V., 2008. "Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings," Renewable Energy, Elsevier, vol. 33(3), pages 366-382.
    3. Nelson, D.B. & Nehrir, M.H. & Wang, C., 2006. "Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems," Renewable Energy, Elsevier, vol. 31(10), pages 1641-1656.
    4. Zoulias, E.I. & Lymberopoulos, N., 2007. "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems," Renewable Energy, Elsevier, vol. 32(4), pages 680-696.
    5. Dakkak, M & Hirata, A & Muhida, R & Kawasaki, Z, 2003. "Operation strategy of residential centralized photovoltaic system in remote areas," Renewable Energy, Elsevier, vol. 28(7), pages 997-1012.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Contreras, Alfonso & Posso, Fausto & Guervos, Esther, 2010. "Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela," Applied Energy, Elsevier, vol. 87(4), pages 1376-1385, April.
    2. Contreras, A. & Posso, F., 2011. "Technical and financial study of the development in Venezuela of the hydrogen energy system," Renewable Energy, Elsevier, vol. 36(11), pages 3114-3123.
    3. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    4. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    5. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    6. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Posso, F. & Contreras, A. & Veziroglu, A., 2009. "The use of hydrogen in the rural sector in Venezuela: Technical and financial study of the storage phase," Renewable Energy, Elsevier, vol. 34(5), pages 1234-1240.
    9. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    10. Fabrizio, Enrico & Corrado, Vincenzo & Filippi, Marco, 2010. "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, Elsevier, vol. 35(3), pages 644-655.
    11. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    12. Karakoulidis, K. & Mavridis, K. & Bandekas, D.V. & Adoniadis, P. & Potolias, C. & Vordos, N., 2011. "Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system," Renewable Energy, Elsevier, vol. 36(8), pages 2238-2244.
    13. Pérez-Navarro, A. & Alfonso, D. & Álvarez, C. & Ibáñez, F. & Sánchez, C. & Segura, I., 2010. "Hybrid biomass-wind power plant for reliable energy generation," Renewable Energy, Elsevier, vol. 35(7), pages 1436-1443.
    14. Giatrakos, G.P. & Tsoutsos, T.D. & Mouchtaropoulos, P.G. & Naxakis, G.D. & Stavrakakis, G., 2009. "Sustainable energy planning based on a stand-alone hybrid renewableenergy/hydrogen power system: Application in Karpathos island, Greece," Renewable Energy, Elsevier, vol. 34(12), pages 2562-2570.
    15. Tzamalis, G. & Zoulias, E.I. & Stamatakis, E. & Varkaraki, E. & Lois, E. & Zannikos, F., 2011. "Techno-economic analysis of an autonomous power system integrating hydrogen technology as energy storage medium," Renewable Energy, Elsevier, vol. 36(1), pages 118-124.
    16. Lagorse, Jeremy & Paire, Damien & Miraoui, Abdellatif, 2009. "Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery," Renewable Energy, Elsevier, vol. 34(3), pages 683-691.
    17. Lacko, R. & Drobnič, B. & Mori, M. & Sekavčnik, M. & Vidmar, M., 2014. "Stand-alone renewable combined heat and power system with hydrogen technologies for household application," Energy, Elsevier, vol. 77(C), pages 164-170.
    18. Jallouli, Rihab & Krichen, Lotfi, 2012. "Sizing, techno-economic and generation management analysis of a stand alone photovoltaic power unit including storage devices," Energy, Elsevier, vol. 40(1), pages 196-209.
    19. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    20. Anestis G. Anastasiadis & Panagiotis Papadimitriou & Paraskevi Vlachou & Georgios A. Vokas, 2023. "Management of Hybrid Wind and Photovoltaic System Electrolyzer for Green Hydrogen Production and Storage in the Presence of a Small Fleet of Hydrogen Vehicles—An Economic Assessment," Energies, MDPI, vol. 16(24), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:3:p:815-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.