IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i5p1234-1240.html
   My bibliography  Save this article

The use of hydrogen in the rural sector in Venezuela: Technical and financial study of the storage phase

Author

Listed:
  • Posso, F.
  • Contreras, A.
  • Veziroglu, A.

Abstract

The aim of this work is to develop and evaluate a mathematical model for the process of storing hydrogen obtained from hydroelectricity via electrolysis, for use as an energetic vector in rural areas of Venezuela. Following an exhaustive bibliographical review of the subject, pressurized containers were chosen as the most appropriate means of storage. The components of the compressed H2 gas storage systems to be modelled are 1) the Compression Unit, CU, and 2) the Storage Unit, SU. With this information and by using non-linear regression methods, we developed a mathematical model with which to study the behaviour of the main variables involved in the storage process: the quantity of H2 to be stored, the storage pressure, energy consumption, the size of the compressor, and the unit cost of the containers. In structural terms, the mathematical model comprises an energy model and a financial model. The results show that there is a range of operating conditions with a minimal overall cost, as a result of the behaviour of the investment cost, which define how the total costs evolve.

Suggested Citation

  • Posso, F. & Contreras, A. & Veziroglu, A., 2009. "The use of hydrogen in the rural sector in Venezuela: Technical and financial study of the storage phase," Renewable Energy, Elsevier, vol. 34(5), pages 1234-1240.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:5:p:1234-1240
    DOI: 10.1016/j.renene.2008.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108003571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zoulias, E.I. & Lymberopoulos, N., 2007. "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems," Renewable Energy, Elsevier, vol. 32(4), pages 680-696.
    2. Beccali, M. & Brunone, S. & Cellura, M. & Franzitta, V., 2008. "Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings," Renewable Energy, Elsevier, vol. 33(3), pages 366-382.
    3. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Contreras, Javier, 2007. "Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage," Renewable Energy, Elsevier, vol. 32(7), pages 1102-1126.
    4. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    5. Isherwood, William & Smith, J.Ray & Aceves, Salvador M & Berry, Gene & Clark, Woodrow & Johnson, Ronald & Das, Deben & Goering, Douglas & Seifert, Richard, 2000. "Remote power systems with advanced storage technologies for Alaskan villages," Energy, Elsevier, vol. 25(10), pages 1005-1020.
    6. Zhou, Li, 2005. "Progress and problems in hydrogen storage methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 395-408, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contreras, Alfonso & Posso, Fausto & Guervos, Esther, 2010. "Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela," Applied Energy, Elsevier, vol. 87(4), pages 1376-1385, April.
    2. Contreras, A. & Posso, F., 2011. "Technical and financial study of the development in Venezuela of the hydrogen energy system," Renewable Energy, Elsevier, vol. 36(11), pages 3114-3123.
    3. Posso Rivera, Fausto & Zalamea, Javier & Espinoza, Juan L. & Gonzalez, Luis G, 2022. "Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Vidoza, Jorge A. & Gallo, Waldyr L.R., 2016. "Projection of fossil fuels consumption in the Venezuelan electricity generation industry," Energy, Elsevier, vol. 104(C), pages 237-249.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    2. Contreras, Alfonso & Posso, Fausto & Guervos, Esther, 2010. "Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela," Applied Energy, Elsevier, vol. 87(4), pages 1376-1385, April.
    3. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    4. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    5. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    6. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    7. Contreras, A. & Posso, F., 2011. "Technical and financial study of the development in Venezuela of the hydrogen energy system," Renewable Energy, Elsevier, vol. 36(11), pages 3114-3123.
    8. Karakoulidis, K. & Mavridis, K. & Bandekas, D.V. & Adoniadis, P. & Potolias, C. & Vordos, N., 2011. "Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system," Renewable Energy, Elsevier, vol. 36(8), pages 2238-2244.
    9. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    10. Lacko, R. & Drobnič, B. & Mori, M. & Sekavčnik, M. & Vidmar, M., 2014. "Stand-alone renewable combined heat and power system with hydrogen technologies for household application," Energy, Elsevier, vol. 77(C), pages 164-170.
    11. Jallouli, Rihab & Krichen, Lotfi, 2012. "Sizing, techno-economic and generation management analysis of a stand alone photovoltaic power unit including storage devices," Energy, Elsevier, vol. 40(1), pages 196-209.
    12. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    13. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    14. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    15. Silva, S.B. & Severino, M.M. & de Oliveira, M.A.G., 2013. "A stand-alone hybrid photovoltaic, fuel cell and battery system: A case study of Tocantins, Brazil," Renewable Energy, Elsevier, vol. 57(C), pages 384-389.
    16. Dursun, Bahtiyar, 2012. "Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6183-6190.
    17. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    18. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    19. Fabrizio, Enrico & Corrado, Vincenzo & Filippi, Marco, 2010. "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, Elsevier, vol. 35(3), pages 644-655.
    20. Nogueira, Carlos Eduardo Camargo & Vidotto, Magno Luiz & Niedzialkoski, Rosana Krauss & de Souza, Samuel Nelson Melegari & Chaves, Luiz Inácio & Edwiges, Thiago & Santos, Darlisson Bentes dos & Wernck, 2014. "Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 151-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:5:p:1234-1240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.