IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i8p6183-6190.html
   My bibliography  Save this article

Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey

Author

Listed:
  • Dursun, Bahtiyar

Abstract

This study is to search for possibilities of supplying the load demand of Kavakli campus of Kirklareli University with solar energy and the fuel cell power generating system (electrolyzer/hydrogen tank/fuel cell) by using the HOMER software due to the fact that hybrid power systems with renewables can significantly reduce emissions which are caused by utilization of non-renewable power sources. In this study, various hybrid systems will be examined and compared among themselves considering cost of energy (COE), renewable fraction, total net present cost (NPC) and hydrogen production. Additionally, this study will seek whether a fuel cell can be integrated into the hybrid systems. According to the study results, the grid connected systems appear cost-effective as expected. Although the grid-connected photovoltaic (PV) hybrid system has the lowest COE and NPC, the grid-connected PV/fuel cell hybrid system with COE, 0.294$/kWh has a slightly higher cost than the optimum one. It is strongly believed that this system may be chosen because it is a cleaner system and its emissions are fairly low.

Suggested Citation

  • Dursun, Bahtiyar, 2012. "Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6183-6190.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6183-6190
    DOI: 10.1016/j.rser.2012.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112004583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Demiroren, A. & Yilmaz, U., 2010. "Analysis of change in electric energy cost with using renewable energy sources in Gökceada, Turkey: An island example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 323-333, January.
    2. Kaya, Durmus, 2006. "Renewable energy policies in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 152-163, April.
    3. Nfah, E.M. & Ngundam, J.M. & Tchinda, R., 2007. "Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon," Renewable Energy, Elsevier, vol. 32(5), pages 832-844.
    4. Zoulias, E.I. & Lymberopoulos, N., 2007. "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems," Renewable Energy, Elsevier, vol. 32(4), pages 680-696.
    5. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    6. Zoulias, E.I. & Glockner, R. & Lymberopoulos, N. & Tsoutsos, T. & Vosseler, I. & Gavalda, O. & Mydske, H.J. & Taylor, P., 2006. "Integration of hydrogen energy technologies in stand-alone power systems analysis of the current potential for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 432-462, October.
    7. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    8. Muselli, M & Notton, G & Poggi, P & Louche, A, 2000. "PV-hybrid power systems sizing incorporating battery storage: an analysis via simulation calculations," Renewable Energy, Elsevier, vol. 20(1), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William E., Lilley & Luke J., Reedman & Liam D., Wagner & Colin F., Alie & Anthony R., Szatow, 2012. "An economic evaluation of the potential for distributed energy in Australia," Energy Policy, Elsevier, vol. 51(C), pages 277-289.
    2. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    3. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    4. Giatrakos, G.P. & Tsoutsos, T.D. & Mouchtaropoulos, P.G. & Naxakis, G.D. & Stavrakakis, G., 2009. "Sustainable energy planning based on a stand-alone hybrid renewableenergy/hydrogen power system: Application in Karpathos island, Greece," Renewable Energy, Elsevier, vol. 34(12), pages 2562-2570.
    5. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    6. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    7. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    8. Tzamalis, G. & Zoulias, E.I. & Stamatakis, E. & Varkaraki, E. & Lois, E. & Zannikos, F., 2011. "Techno-economic analysis of an autonomous power system integrating hydrogen technology as energy storage medium," Renewable Energy, Elsevier, vol. 36(1), pages 118-124.
    9. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    10. Asrari, Arash & Ghasemi, Abolfazl & Javidi, Mohammad Hossein, 2012. "Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3123-3130.
    11. Contreras, Alfonso & Posso, Fausto & Guervos, Esther, 2010. "Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela," Applied Energy, Elsevier, vol. 87(4), pages 1376-1385, April.
    12. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    13. Ghasemi, Abolfazl & Asrari, Arash & Zarif, Mahdi & Abdelwahed, Sherif, 2013. "Techno-economic analysis of stand-alone hybrid photovoltaic–diesel–battery systems for rural electrification in eastern part of Iran—A step toward sustainable rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 456-462.
    14. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    15. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    16. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    17. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    18. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.
    19. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations," Renewable Energy, Elsevier, vol. 34(4), pages 1134-1144.
    20. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6183-6190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.