IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225014100.html
   My bibliography  Save this article

Performance analysis and optimization of a 20 MWh piston hydraulic gravity energy storage (PHGES) system

Author

Listed:
  • He, Denghui
  • Shen, Yangfei
  • Luo, Nan

Abstract

The volatility and intermittency of renewable energy sources, such as wind and solar power, significantly affect energy supply stability. Consequently, the analysis and design of large-capacity energy storage systems have emerged as a crucial research area. This paper conducted a parameter analysis and optimization design of a large-capacity piston hydraulic gravity energy storage (PHGES) system employing MATLAB/Simulink numerical simulation. Initially, following the modular modeling concept, three subsystem modules were developed, encompassing the gravity well mathematical model, piston movement mathematical model and valve operation mathematical model. The reliability and validity of the simulation models were validated through experimental results. Furthermore, the investigation delved into the system dynamic characteristics, energy conversion performance, and economic viability under design conditions. Subsequently, employing parameter sensitivity analysis and correlation analysis methods, the study elucidated the influence trends and degrees of six key system design parameters—gravity well height, gravity well diameter, piston height, piston density, return pipe cross-sectional area, and valve opening area—on energy conversion performance and economic feasibility within the studied parameter ranges. Lastly, based on the parameter study outcomes, the primary impacting factors of the system were identified. Through the utilization of linear weighting and differential evolution algorithm, the optimal design parameters for a 20 MWh PHGES system were determined. The optimized system efficiency reached 76.67 %, reflecting a 0.27 % improvement over the initial design conditions. Economically, the levelized cost of energy (LCOE) decreased from 0.6921 CNY/kWh to 0.6258 CNY/kWh, signifying a 9.6 % reduction compared to the original system. The study provides a theoretical foundation and technical guidance for the utilization of large-capacity PHGES technology.

Suggested Citation

  • He, Denghui & Shen, Yangfei & Luo, Nan, 2025. "Performance analysis and optimization of a 20 MWh piston hydraulic gravity energy storage (PHGES) system," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014100
    DOI: 10.1016/j.energy.2025.135768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. McIlwaine, Neil & Foley, Aoife M. & Morrow, D. John & Al Kez, Dlzar & Zhang, Chongyu & Lu, Xi & Best, Robert J., 2021. "A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems," Energy, Elsevier, vol. 229(C).
    3. Hilary S. Boudet, 2019. "Public perceptions of and responses to new energy technologies," Nature Energy, Nature, vol. 4(6), pages 446-455, June.
    4. Zare, V. & Mahmoudi, S.M.S. & Yari, M., 2013. "An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle," Energy, Elsevier, vol. 61(C), pages 397-409.
    5. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    6. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    7. Berrada, Asmae, 2022. "Financial and economic modeling of large-scale gravity energy storage system," Renewable Energy, Elsevier, vol. 192(C), pages 405-419.
    8. Tomasz Siostrzonek, 2023. "The Mine Shaft Energy Storage System—Implementation Threats and Opportunities," Energies, MDPI, vol. 16(15), pages 1-12, July.
    9. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Ren, Dawei & Xu, GuiZhi & Han, Minxiao, 2024. "Typical unit capacity configuration strategies and their control methods of modular gravity energy storage plants," Energy, Elsevier, vol. 295(C).
    10. Berrada, Asmae & Loudiyi, Khalid & Garde, Raquel, 2017. "Dynamic modeling of gravity energy storage coupled with a PV energy plant," Energy, Elsevier, vol. 134(C), pages 323-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Xu, Guizhi, 2025. "Enhancing modular gravity energy storage plants: A hybrid strategy for optimal unit capacity configuration," Applied Energy, Elsevier, vol. 378(PA).
    2. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Ren, Dawei & Xu, GuiZhi & Han, Minxiao, 2024. "Typical unit capacity configuration strategies and their control methods of modular gravity energy storage plants," Energy, Elsevier, vol. 295(C).
    3. Kropotin, P. & Marchuk, I., 2024. "Analytical and quantitative assessment of capital expenditures for construction of an aboveground suspended weight energy storage," Renewable Energy, Elsevier, vol. 220(C).
    4. Jurasz, Jakub & Piasecki, Adam & Hunt, Julian & Zheng, Wandong & Ma, Tao & Kies, Alexander, 2022. "Building integrated pumped-storage potential on a city scale: An analysis based on geographic information systems," Energy, Elsevier, vol. 242(C).
    5. Soumya Basu & Tetsuhito Hoshino & Hideyuki Okumura, 2024. "Analyzing Geospatial Cost Variability of Hybrid Solar–Gravity Storage System in High-Curtailment Suburban Areas," Energies, MDPI, vol. 17(9), pages 1-33, April.
    6. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    7. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    8. Zhou, Jiahui & Tong, Bing & Wang, Haiming & Xu, Gang & Zhang, Runzhi & Zhang, Wentao, 2025. "Flexible design and operation of off-grid green ammonia systems with gravity energy storage under long-term renewable power uncertainty," Applied Energy, Elsevier, vol. 388(C).
    9. Xiao, Feng & Chen, Wei & Zhang, Bin & Zhang, Tong & Xie, Ningning & Wang, Zhitao & Chen, Hui & Xue, Xiaodai, 2023. "A novel constant power operation mode of constant volume expansion process for AA-CAES: Regulation strategy, dynamic simulation, and comparison," Energy, Elsevier, vol. 284(C).
    10. Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.
    11. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    12. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    13. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    14. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    15. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Prasasti, E.B. & Joseph, M. & Miao, X. & Zangeneh, M. & Terheiden, K., 2024. "Design of shaft- and rim-driven contra-rotating reversible pump-turbine to optimize novel low-head pumped hydro energy storages," Energy, Elsevier, vol. 306(C).
    18. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    19. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.