IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics0360544220306149.html
   My bibliography  Save this article

Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems

Author

Listed:
  • Caldera, Upeksha
  • Breyer, Christian

Abstract

This study analyses the role that renewable energy based desalination, in conjunction with improvements in water use efficiency in the irrigation sector, can play towards securing future global water supplies. It is found that the global desalination demand by 2050 can be reduced as much as 30% and 60%, depending on the irrigation efficiency growth rate. India, China, USA, Pakistan and Iran account for between 56% and 62% of the global desalination demand. Decarbonising the desalination sector by 2050, will result in global average levelised cost of water decreasing from about 2.4 €/m3 in 2015, considering unsubsidised fossil fuel costs, to approximately 1.05 €/m3 by 2050, with most regions in the cost range of 0.32 €/m3 – 1.66 €/m3. Low-cost renewable electricity, in particular solar photovoltaics and battery storage, is found to form the backbone of a sustainable and clean global water supply, supported by measures to increase irrigation efficiency. The results show the untapped relationships between the irrigation and decarbonised desalination sector that can be utilised to strengthen the global water supply for the decades to come and meet United Nations Sustainable Development Goals.

Suggested Citation

  • Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306149
    DOI: 10.1016/j.energy.2020.117507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220306149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    2. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    3. Meerganz von Medeazza, Gregor & Moreau, Vincent, 2007. "Modelling of water–energy systems. The case of desalination," Energy, Elsevier, vol. 32(6), pages 1024-1031.
    4. Alena Lohrmann & Javier Farfan & Upeksha Caldera & Christoph Lohrmann & Christian Breyer, 2019. "Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery," Nature Energy, Nature, vol. 4(12), pages 1040-1048, December.
    5. Sadiqa, Ayesha & Gulagi, Ashish & Breyer, Christian, 2018. "Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050," Energy, Elsevier, vol. 147(C), pages 518-533.
    6. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    7. Amarasinghe, Upali A. & Smakhtin, Vladimir, 2014. "Global water demand projections: past, present and future," IWMI Reports 201006, International Water Management Institute.
    8. Unesco Unesco, 2015. "Water for a Sustainable World," Working Papers id:6657, eSocialSciences.
    9. Amarasinghe, Upali A. & Smakhtin, Vladimir., 2014. "Global water demand projections: past, present and future," IWMI Research Reports H046577, International Water Management Institute.
    10. Xuexiu Jia & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Sharifah Rafidah Wan Alwi, 2019. "Analyzing the Energy Consumption, GHG Emission, and Cost of Seawater Desalination in China," Energies, MDPI, vol. 12(3), pages 1-16, January.
    11. Vanham, D. & Hoekstra, A. Y. & Wada, Y. & Bouraoui, F. & de Roo, A. & Mekonnen, M. M. & van de Bund, W. J. & Batelaan, O. & Pavelic, Paul & Bastiaanssen, W. G. M. & Kummu, M. & Rockstrom, J. & Liu, J., "undated". "Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stressâ€," Papers published in Journals (Open Access) H048267, International Water Management Institute.
    12. Martin-Gorriz, B. & Soto-García, M. & Martínez-Alvarez, V., 2014. "Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios," Energy, Elsevier, vol. 77(C), pages 478-488.
    13. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    14. Carole Dalin & Yoshihide Wada & Thomas Kastner & Michael J. Puma, 2017. "Groundwater depletion embedded in international food trade," Nature, Nature, vol. 543(7647), pages 700-704, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    2. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    3. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    4. Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).
    5. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    6. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    7. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    10. Abdelrahman Azzuni & Arman Aghahosseini & Manish Ram & Dmitrii Bogdanov & Upeksha Caldera & Christian Breyer, 2020. "Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    11. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    12. Caldera, Upeksha & Gulagi, Ashish & Jayasinghe, Nilan & Breyer, Christian, 2023. "Looking island wide to overcome Sri Lankaʼs energy crisis while gaining independence from fossil fuel imports," Renewable Energy, Elsevier, vol. 218(C).
    13. Upeksha Caldera & Christian Breyer, 2023. "Afforesting arid land with renewable electricity and desalination to mitigate climate change," Nature Sustainability, Nature, vol. 6(5), pages 526-538, May.
    14. Maurizio Filippo Acciarri & Silvia Checola & Paolo Galli & Giacomo Magatti & Silvana Stefani, 2021. "Water Resource Management and Sustainability: A Case Study in Faafu Atoll in the Republic of Maldives," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    15. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    16. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. ElSayed, Mai & Aghahosseini, Arman & Breyer, Christian, 2023. "High cost of slow energy transitions for emerging countries: On the case of Egypt's pathway options," Renewable Energy, Elsevier, vol. 210(C), pages 107-126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.
    2. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    3. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    4. Hao Li & Ying Qiao & Zongxiang Lu & Baosen Zhang, 2022. "Power System Transition with Multiple Flexibility Resources: A Data-Driven Approach," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    5. Ashish Gulagi & Manish Ram & Dmitrii Bogdanov & Sandeep Sarin & Theophilus Nii Odai Mensah & Christian Breyer, 2022. "The role of renewables for rapid transitioning of the power sector across states in India," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    9. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Ghorbani, Narges & Aghahosseini, Arman & Breyer, Christian, 2020. "Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis," Renewable Energy, Elsevier, vol. 146(C), pages 125-148.
    12. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    14. Yufeng Luo & Seydou Traore & Xinwei Lyu & Weiguang Wang & Ying Wang & Yongyu Xie & Xiyun Jiao & Guy Fipps, 2015. "Medium Range Daily Reference Evapotranspiration Forecasting by Using ANN and Public Weather Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3863-3876, August.
    15. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    16. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    17. Bri‐Mathias S. Hodge & Himanshu Jain & Carlo Brancucci & Gab‐Su Seo & Magnus Korpås & Juha Kiviluoma & Hannele Holttinen & James Charles Smith & Antje Orths & Ana Estanqueiro & Lennart Söder & Damian , 2020. "Addressing technical challenges in 100% variable inverter‐based renewable energy power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    18. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    19. Juan Carlos Osorio-Aravena & Marina Frolova & Julio Terrados-Cepeda & Emilio Muñoz-Cerón, 2020. "Spatial Energy Planning: A Review," Energies, MDPI, vol. 13(20), pages 1-14, October.
    20. Vladimir Potashnikov & Alexander Golub & Michael Brody & Oleg Lugovoy, 2022. "Decarbonizing Russia: Leapfrogging from Fossil Fuel to Hydrogen," Energies, MDPI, vol. 15(3), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.