IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8932-d435670.html
   My bibliography  Save this article

Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India

Author

Listed:
  • Kusum Pandey

    (Department of Soil and Water Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab, India)

  • Shiv Kumar

    (Department of Irrigation and Drainage Engineering, College of Technology, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India)

  • Anurag Malik

    (Punjab Agricultural University, Regional Research Station, Bathinda 151001, Punjab, India)

  • Alban Kuriqi

    (CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal)

Abstract

Accurate information about groundwater level prediction is crucial for effective planning and management of groundwater resources. In the present study, the Artificial Neural Network (ANN), optimized with a Genetic Algorithm (GA-ANN), was employed for seasonal groundwater table depth (GWTD) prediction in the area between the Ganga and Hindon rivers located in Uttar Pradesh State, India. A total of 18 models for both seasons (nine for the pre-monsoon and nine for the post-monsoon) have been formulated by using groundwater recharge (GW R ), groundwater discharge (GW D ), and previous groundwater level data from a 21-year period (1994–2014). The hybrid GA-ANN models’ predictive ability was evaluated against the traditional GA models based on statistical indicators and visual inspection. The results appraisal indicates that the hybrid GA-ANN models outperformed the GA models for predicting the seasonal GWTD in the study region. Overall, the hybrid GA-ANN-8 model with an 8-9-1 structure (i.e., 8: inputs, 9: neurons in the hidden layer, and 1: output) was nominated optimal for predicting the GWTD during pre- and post-monsoon seasons. Additionally, it was noted that the maximum number of input variables in the hybrid GA-ANN approach improved the prediction accuracy. In conclusion, the proposed hybrid GA-ANN model’s findings could be readily transferable or implemented in other parts of the world, specifically those with similar geology and hydrogeology conditions for sustainable planning and groundwater resources management.

Suggested Citation

  • Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8932-:d:435670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amarasinghe, Upali A. & Smakhtin, Vladimir., 2014. "Global water demand projections: past, present and future," IWMI Research Reports H046577, International Water Management Institute.
    2. Anurag Malik & Anil Kumar & Sinan Q Salih & Sungwon Kim & Nam Won Kim & Zaher Mundher Yaseen & Vijay P Singh, 2020. "Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-31, May.
    3. Partha Majumder & T.I. Eldho, 2020. "Artificial Neural Network and Grey Wolf Optimizer Based Surrogate Simulation-Optimization Model for Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 763-783, January.
    4. Anurag Malik & Anil Kumar & Rajesh P. Singh, 2019. "Application of Heuristic Approaches for Prediction of Hydrological Drought Using Multi-scalar Streamflow Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3985-4006, September.
    5. Amarasinghe, Upali A. & Smakhtin, Vladimir, 2014. "Global water demand projections: past, present and future," IWMI Reports 201006, International Water Management Institute.
    6. S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
    7. Sheelabhadra Mohanty & Madan Jha & Ashwani Kumar & K. Sudheer, 2010. "Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1845-1865, July.
    8. Haijiao Yu & Xiaohu Wen & Qi Feng & Ravinesh C. Deo & Jianhua Si & Min Wu, 2018. "Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 301-323, January.
    9. Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
    10. Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
    11. Shishir Gaur & Sudheer Ch & Didier Graillot & B. Chahar & D. Kumar, 2013. "Application of Artificial Neural Networks and Particle Swarm Optimization for the Management of Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 927-941, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priyanka Majumder & Arnab Paul & Pratik Saha & Mrinmoy Majumder & Dayarnab Baidya & Dhritiman Saha, 2023. "Trapezoidal fuzzy BWM-TOPSIS approach and application on water resources," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2648-2669, March.
    2. Yankun Liu & Mingliang Du & Xiaofei Ma & Shuting Hu & Ziyun Tuo, 2025. "Groundwater Level Prediction Using a Hybrid TCN–Transformer–LSTM Model and Multi-Source Data Fusion: A Case Study of the Kuitun River Basin, Xinjiang," Sustainability, MDPI, vol. 17(19), pages 1-17, September.
    3. Vishwakarma, Dinesh Kumar & Pandey, Kusum & Kaur, Arshdeep & Kushwaha, N.L. & Kumar, Rohitashw & Ali, Rawshan & Elbeltagi, Ahmed & Kuriqi, Alban, 2022. "Methods to estimate evapotranspiration in humid and subtropical climate conditions," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Shivam Saw & Prasoon Kumar Singh & Jaydev Kumar Mahato & Rohit Patel & Deep Shikha, 2025. "A modeling approach for the suitability evaluation and human health risk assessment of heavy metals dispersion in groundwater resources," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 7871-7895, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
    2. Wen-Ping Tsai & Yen-Ming Chiang & Jun-Lin Huang & Fi-John Chang, 2016. "Exploring the Mechanism of Surface and Ground Water through Data-Driven Techniques with Sensitivity Analysis for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4789-4806, October.
    3. Kostić, Srđan & Stojković, Milan & Guranov, Iva & Vasović, Nebojša, 2019. "Revealing the background of groundwater level dynamics: Contributing factors, complex modeling and engineering applications," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 408-421.
    4. Ao, Chang & Zeng, Wenzhi & Wu, Lifeng & Qian, Long & Srivastava, Amit Kumar & Gaiser, Thomas, 2021. "Time-delayed machine learning models for estimating groundwater depth in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Sandra M. Guzman & Joel O. Paz & Mary Love M. Tagert, 2017. "The Use of NARX Neural Networks to Forecast Daily Groundwater Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1591-1603, March.
    6. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    7. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Prem Chandra Pandey & Manish Pandey, 2023. "Highlighting the role of agriculture and geospatial technology in food security and sustainable development goals," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(5), pages 3175-3195, October.
    9. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    10. Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
    11. Ozgur Kisi & Meysam Alizamir & Mohammad Zounemat-Kermani, 2017. "Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 367-381, May.
    12. Dilip Kumar Roy & Bithin Datta, 2017. "Fuzzy C-Mean Clustering Based Inference System for Saltwater Intrusion Processes Prediction in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 355-376, January.
    13. Afshin Khoshand, 2021. "Application of artificial intelligence in groundwater ecosystem protection: a case study of Semnan/Sorkheh plain, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16617-16631, November.
    14. Bahrudin Hrnjica & Ognjen Bonacci, 2019. "Lake Level Prediction using Feed Forward and Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2471-2484, May.
    15. Nassima Amiri & Rachid Lahlali & Said Amiri & Moussa EL Jarroudi & Mohammed Yacoubi Khebiza & Mohammed Messouli, 2021. "Development of an Integrated Model to Assess the Impact of Agricultural Practices and Land Use on Agricultural Production in Morocco under Climate Stress over the Next Twenty Years," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    16. Liu, Jing & Hertel, Thomas W. & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz C. & Grogan, Danielle S. & Frolking, Steve, "undated". "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Security and Land Use," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258118, Agricultural and Applied Economics Association.
    17. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    18. Sangita Dey & Arabin Kumar Dey & Rajesh Kumar Mall, 2021. "Modeling Long-term Groundwater Levels By Exploring Deep Bidirectional Long Short-Term Memory using Hydro-climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3395-3410, August.
    19. Indrajit Mandal & Swades Pal, 2022. "Assessing the impact of ecological insecurity on ecosystem service value in stone quarrying and crushing dominated areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11760-11784, October.
    20. Xiao-Jun Wang & Jian-Yun Zhang & Shamsuddin Shahid & Wei Xie & Chao-Yang Du & Xiao-Chuan Shang & Xu Zhang, 2018. "Modeling domestic water demand in Huaihe River Basin of China under climate change and population dynamics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 911-924, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8932-:d:435670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.