IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p4921-d372470.html
   My bibliography  Save this article

Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050

Author

Listed:
  • Abdelrahman Azzuni

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Arman Aghahosseini

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Manish Ram

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Dmitrii Bogdanov

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Upeksha Caldera

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Christian Breyer

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

Abstract

Energy security analysis is a strong tool for policy makers. It allows them to formulate policies that would enhance energy systems by targeting necessary actions. In this study, the impacts of transitioning from a fossil fuels to a renewables dominated energy system on energy security is analysed for Jordan. A Best Policy Scenario was developed for the Jordanian energy system to trace the transition to a 100% renewable energy system. Energy security was analysed for the future system by a qualitative approach utilising colour codes. The results reveal that the primary energy demand increases from 64 TWh in 2015 to 130 TWh in 2050, dominated by electricity and followed by heat and bioenergy. This indicates that a high level of direct and indirect electrification is the key to transition towards a fully sustainable energy system. Renewable electricity generation is projected to increase from 0.1 TWh in 2015 to 110.7 TWh in 2050, with a solar photovoltaic share of 92%. The levelised cost of energy develops from 78 €/MWh in 2015 to 61 €/MWh in 2050. In 2050, this system will have zero greenhouse gas emissions, it will provide plenty of job opportunities and revenue generation. This proposed transition will enhance the energy security level of the Jordanian energy system in five of the six dimensions studied. The five dimensions that will be improved are availability, cost, environment, health, and employment, whereas the dimension on diversity will stay neutral. It can be concluded that Jordan can achieve a 100% renewable energy system by 2050 and such a transition will enhance the energy security level.

Suggested Citation

  • Abdelrahman Azzuni & Arman Aghahosseini & Manish Ram & Dmitrii Bogdanov & Upeksha Caldera & Christian Breyer, 2020. "Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4921-:d:372470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/4921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/4921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Hamed, Tareq Abu & Bressler, Lindsey, 2019. "Energy security in Israel and Jordan: The role of renewable energy sources," Renewable Energy, Elsevier, vol. 135(C), pages 378-389.
    3. Halvor Mehlum & Karl Moene & Ragnar Torvik, 2006. "Cursed by Resources or Institutions?," The World Economy, Wiley Blackwell, vol. 29(8), pages 1117-1131, August.
    4. Löschel, Andreas & Moslener, Ulf & Rübbelke, Dirk T.G., 2010. "Indicators of energy security in industrialised countries," Energy Policy, Elsevier, vol. 38(4), pages 1665-1671, April.
    5. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    6. Anagreh, Yaser & Bataineh, Ahmad & Al-Odat, Muhammad, 2010. "Assessment of renewable energy potential, at Aqaba in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1347-1351, May.
    7. Ramana, M.V. & Ahmad, Ali, 2016. "Wishful thinking and real problems: Small modular reactors, planning constraints, and nuclear power in Jordan," Energy Policy, Elsevier, vol. 93(C), pages 236-245.
    8. Emil Kirchner & Can Berk, 2010. "European Energy Security Co-operation: Between Amity and Enmity," Journal of Common Market Studies, Wiley Blackwell, vol. 48, pages 859-880, September.
    9. Frederick van der Ploeg, 2011. "Natural Resources: Curse or Blessing?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 366-420, June.
    10. Jaber, J.O. & Jaber, Q.M. & Sawalha, S.A. & Mohsen, M.S., 2008. "Evaluation of conventional and renewable energy sources for space heating in the household sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 278-289, January.
    11. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    12. Abdelrahman Azzuni & Christian Breyer, 2020. "Global Energy Security Index and Its Application on National Level," Energies, MDPI, vol. 13(10), pages 1-49, May.
    13. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    14. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    15. Jaber, J.O. & Elkarmi, Fawwaz & Alasis, Emil & Kostas, Anagnostopoulos, 2015. "Employment of renewable energy in Jordan: Current status, SWOT and problem analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 490-499.
    16. Vivoda, Vlado, 2010. "Evaluating energy security in the Asia-Pacific region: A novel methodological approach," Energy Policy, Elsevier, vol. 38(9), pages 5258-5263, September.
    17. Ahmad Alshwawra & Ahmad Almuhtady, 2020. "Impact of Regional Conflicts on Energy Security in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 45-50.
    18. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    19. Franki, Vladimir & Višković, Alfredo, 2015. "Energy security, policy and technology in South East Europe: Presenting and applying an energy security index to Croatia," Energy, Elsevier, vol. 90(P1), pages 494-507.
    20. Sylvain Cote, 2019. "Renewable Energy and Employment: The Experience of Egypt, Jordan and Morocco," Discussion Papers ks--2019-dp69, King Abdullah Petroleum Studies and Research Center.
    21. Valentine, Scott Victor, 2011. "Emerging symbiosis: Renewable energy and energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4572-4578.
    22. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    23. Augutis, Juozas & Krikstolaitis, Ricardas & Martisauskas, Linas & Peciulyte, Sigita, 2012. "Energy security level assessment technology," Applied Energy, Elsevier, vol. 97(C), pages 143-149.
    24. Bohi, Douglas R. & Toman, Michael A., 1993. "Energy security: externalities and policies," Energy Policy, Elsevier, vol. 21(11), pages 1093-1109, November.
    25. Jun, Eunju & Kim, Wonjoon & Chang, Soon Heung, 2009. "The analysis of security cost for different energy sources," Applied Energy, Elsevier, vol. 86(10), pages 1894-1901, October.
    26. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    27. Benjamin K. Sovacool, 2012. "Energy security: challenges and needs," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 51-59, July.
    28. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    29. Ghorbani, Narges & Aghahosseini, Arman & Breyer, Christian, 2020. "Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis," Renewable Energy, Elsevier, vol. 146(C), pages 125-148.
    30. Corey Johnson & Tim Boersma, 2015. "The politics of energy security: contrasts between the United States and the European Union," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 171-177, March.
    31. Bielecki, J., 2002. "Energy security: is the wolf at the door?," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(2), pages 235-250.
    32. Eaves, James & Eaves, Stephen, 2007. "Renewable corn-ethanol and energy security," Energy Policy, Elsevier, vol. 35(11), pages 5958-5963, November.
    33. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2018. "Solar driven net zero emission electricity supply with negligible carbon cost: Israel as a case study for Sun Belt countries," Energy, Elsevier, vol. 155(C), pages 87-104.
    34. Thomas B. Johansson & Nebojsa Nakicenovic, 2012. "The Global Energy Assessment," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, October.
    35. Alena Lohrmann & Javier Farfan & Upeksha Caldera & Christoph Lohrmann & Christian Breyer, 2019. "Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery," Nature Energy, Nature, vol. 4(12), pages 1040-1048, December.
    36. Hrayshat, Eyad S. & Al-Soud, Mohammed S., 2004. "Potential of solar energy development for water pumping in Jordan," Renewable Energy, Elsevier, vol. 29(8), pages 1393-1399.
    37. Arman Aghahosseini & Dmitrii Bogdanov & Christian Breyer, 2017. "A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions," Energies, MDPI, vol. 10(8), pages 1-28, August.
    38. Anagreh, Yaser & Bataineh, Ahmad, 2011. "Renewable energy potential assessment in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2232-2239, June.
    39. Hrayshat, Eyad S., 2007. "Analysis of renewable energy situation in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1873-1887, October.
    40. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    41. Sachs, Jeffrey D. & Warner, Andrew M., 2001. "The curse of natural resources," European Economic Review, Elsevier, vol. 45(4-6), pages 827-838, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas Al-Refaie & Natalija Lepkova, 2022. "Impacts of Renewable Energy Policies on CO 2 Emissions Reduction and Energy Security Using System Dynamics: The Case of Small-Scale Sector in Jordan," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    2. Fernando Martins & Pedro Moura & Aníbal T. de Almeida, 2022. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," Energies, MDPI, vol. 15(5), pages 1-35, February.
    3. Rehan, Mohammad & Raza, Muhammad Amir & Aman, M.M. & Abro, Abdul Ghani & Ismail, Iqbal Mohammad Ibrahim & Munir, Said & Summan, Ahmed & Shahzad, Khurram & Rashid, Muhammad Imtiaz & Ali, Nadeem, 2023. "Untapping the potential of bioenergy for achieving sustainable energy future in Pakistan," Energy, Elsevier, vol. 275(C).
    4. Ahmed Al-Salaymeh & Sara AlTwassi & Rasha AlBeek & Kholoud Hassouneh & Diana Athamneh & Noor Eldin Alkiswani & Rashed Manna & Natalie Asfour, 2022. "Smart Meters Rollout in Jordan: Opportunities, Business Models, Challenges, and Recommendations," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 394-408, July.
    5. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Walter Leal Filho & Abdul-Lateef Balogun & Dinesh Surroop & Amanda Lange Salvia & Kapil Narula & Chunlan Li & Julian David Hunt & Andrea Gatto & Ayyoob Sharifi & Haibo Feng & Stella Tsani & Hossein Az, 2022. "Realising the Potential of Renewable Energy as a Tool for Energy Security in Small Island Developing States," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    7. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    9. Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    10. Zaixun Ling & Yibo Cui & Jingwen Zheng & Yu Guo & Wanli Cai & Xiaofei Chen & Jiaqi Yuan & Wenjie Gang, 2021. "Design Optimization and Comparative Analysis of 100% Renewable Energy Systems for Residential Communities in Typical Areas of China When Considering Environmental and Economic Performance," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    11. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    12. ElSayed, Mai & Aghahosseini, Arman & Breyer, Christian, 2023. "High cost of slow energy transitions for emerging countries: On the case of Egypt's pathway options," Renewable Energy, Elsevier, vol. 210(C), pages 107-126.
    13. Simon Hilpert & Franziska Dettner & Ahmed Al-Salaymeh, 2020. "Analysis of Cost-Optimal Renewable Energy Expansion for the Near-Term Jordanian Electricity System," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    14. Serena Sandri & Hussam Hussein & Nooh Alshyab, 2020. "Sustainability of the Energy Sector in Jordan: Challenges and Opportunities," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    15. Batara Surya & Andi Muhibuddin & Seri Suriani & Emil Salim Rasyidi & Baharuddin Baharuddin & Andi Tenri Fitriyah & Herminawaty Abubakar, 2021. "Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia," Sustainability, MDPI, vol. 13(3), pages 1-45, January.
    16. Bashar Hammad & Sameer Al-Dahidi & Yousef Aldahouk & Daniel Majrouh & Suhib Al-Remawi, 2024. "Technical, Economic, and Environmental Investigation of Pumped Hydroelectric Energy Storage Integrated with Photovoltaic Systems in Jordan," Sustainability, MDPI, vol. 16(4), pages 1-26, February.
    17. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Potrč, Sanja & Čuček, Lidija & Martin, Mariano & Kravanja, Zdravko, 2021. "Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Tutak, Magdalena & Brodny, Jarosław, 2022. "Analysis of the level of energy security in the three seas initiative countries," Applied Energy, Elsevier, vol. 311(C).
    20. Amin, Sakib Bin & Chang, Youngho & Khan, Farhan & Taghizadeh-Hesary, Farhad, 2022. "Energy security and sustainable energy policy in Bangladesh: From the lens of 4As framework," Energy Policy, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelrahman Azzuni & Christian Breyer, 2020. "Global Energy Security Index and Its Application on National Level," Energies, MDPI, vol. 13(10), pages 1-49, May.
    2. Tomasz Rokicki & Aleksandra Perkowska, 2021. "Diversity and Changes in the Energy Balance in EU Countries," Energies, MDPI, vol. 14(4), pages 1-19, February.
    3. Månsson, André & Johansson, Bengt & Nilsson, Lars J., 2014. "Assessing energy security: An overview of commonly used methodologies," Energy, Elsevier, vol. 73(C), pages 1-14.
    4. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    5. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    6. Zhang, Long & Yu, Jing & Sovacool, Benjamin K. & Ren, Jingzheng, 2017. "Measuring energy security performance within China: Toward an inter-provincial prospective," Energy, Elsevier, vol. 125(C), pages 825-836.
    7. Dakpogan, Arnaud & Smit, Eon, 2018. "Measuring electricity security risk," MPRA Paper 89295, University Library of Munich, Germany.
    8. Amin, Sakib Bin & Chang, Youngho & Khan, Farhan & Taghizadeh-Hesary, Farhad, 2022. "Energy security and sustainable energy policy in Bangladesh: From the lens of 4As framework," Energy Policy, Elsevier, vol. 161(C).
    9. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    10. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    11. Sovacool, Benjamin K. & Saunders, Harry, 2014. "Competing policy packages and the complexity of energy security," Energy, Elsevier, vol. 67(C), pages 641-651.
    12. Wang, Qiang & Zhou, Kan, 2017. "A framework for evaluating global national energy security," Applied Energy, Elsevier, vol. 188(C), pages 19-31.
    13. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    14. Tete, Komlan H.S. & Soro, Y.M. & Sidibé, S.S. & Jones, Rory V., 2023. "Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications," Energy Policy, Elsevier, vol. 173(C).
    15. Le, Thai-Ha & Nguyen, Canh Phuc, 2019. "Is energy security a driver for economic growth? Evidence from a global sample," Energy Policy, Elsevier, vol. 129(C), pages 436-451.
    16. Raghoo, Pravesh & Surroop, Dinesh & Wolf, Franziska & Leal Filho, Walter & Jeetah, Pratima & Delakowitz, Bernd, 2018. "Dimensions of energy security in Small Island Developing States," Utilities Policy, Elsevier, vol. 53(C), pages 94-101.
    17. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Richard S. J. Tol, 2023. "Navigating the energy trilemma during geopolitical and environmental crises," Papers 2301.07671, arXiv.org.
    19. Serena Sandri & Hussam Hussein & Nooh Alshyab, 2020. "Sustainability of the Energy Sector in Jordan: Challenges and Opportunities," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    20. Martchamadol, Jutamanee & Kumar, S., 2013. "An aggregated energy security performance indicator," Applied Energy, Elsevier, vol. 103(C), pages 653-670.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4921-:d:372470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.