IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222004698.html
   My bibliography  Save this article

An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization

Author

Listed:
  • Zhang, Yuan
  • Liang, Tianyang
  • Yang, Ke

Abstract

In this paper, an integrated energy storage system consisting of Compressed Carbon dioxide Energy Storage (CCES) and Organic Rankine Cycle (ORC) was proposed. Four criteria (system exergy efficiency, total cost rate of exergy destruction, total product unit cost, and total exergoeconomic factor) were defined to evaluate the system performance from exergy and exergoeconomic points of view. The influence of key parameters on system performance was analyzed, and multi-objective optimization of the system was conducted. The results showed that for the base case, the net power output, system exergy efficiency, and total product unit cost were 27.736 MW, 66.64%, and 20.34 $/GJ, respectively. Recuperator had the largest exergy destruction (39.17% of the total exergy destruction) and a higher value of investment cost rate, signifying its necessity of optimization. Sensitivity analysis demonstrated the monotonic effects of compressor inlet temperature, turbine inlet temperature, and minimum temperature difference in heat exchangers on system performance, but for pressure ratio or pump2 outlet pressure, there was an optimal value for the system performance within the range of values studied. Finally, multi-objective optimization recommended a 72.6% for system exergy efficiency, 452.35 $/h for total cost rate of exergy destruction, and 18.49 $/GJ for total product unit cost.

Suggested Citation

  • Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004698
    DOI: 10.1016/j.energy.2022.123566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi, Z. & Fallah, M. & Mahmoudi, S.M. Seyed, 2019. "Advanced exergy analysis of recompression supercritical CO2 cycle," Energy, Elsevier, vol. 178(C), pages 631-643.
    2. Zare, V. & Mahmoudi, S.M.S. & Yari, M., 2013. "An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle," Energy, Elsevier, vol. 61(C), pages 397-409.
    3. Chys, M. & van den Broek, M. & Vanslambrouck, B. & De Paepe, M., 2012. "Potential of zeotropic mixtures as working fluids in organic Rankine cycles," Energy, Elsevier, vol. 44(1), pages 623-632.
    4. Liao, Gaoliang & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Leng, Erwei, 2020. "Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas," Applied Energy, Elsevier, vol. 266(C).
    5. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    6. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Gou, Xing & Chen, Qun & Hu, Kang & Ma, Huan & Chen, Lei & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2018. "Optimal planning of capacities and distribution of electric heater and heat storage for reduction of wind power curtailment in power systems," Energy, Elsevier, vol. 160(C), pages 763-773.
    8. Sun, Qingxuan & Wang, Yaxiong & Cheng, Ziyang & Wang, Jiangfeng & Zhao, Pan & Dai, Yiping, 2020. "Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source," Renewable Energy, Elsevier, vol. 147(P3), pages 2822-2832.
    9. Hao, Yinping & He, Qing & Fu, Hailun & Du, Dongmei & Liu, Wenyi, 2021. "Thermal parameter optimization design of an energy storage system with CO2 as working fluid," Energy, Elsevier, vol. 230(C).
    10. Liu, Yang & Han, Jitian & You, Huailiang, 2020. "Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture," Energy, Elsevier, vol. 190(C).
    11. Christoph Jakiel & Stefan Zunft & Andreas Nowi, 2007. "Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 5(3), pages 296-306.
    12. Hao, Yinping & He, Qing & Du, Dongmei, 2020. "A trans-critical carbon dioxide energy storage system with heat pump to recover stored heat of compression," Renewable Energy, Elsevier, vol. 152(C), pages 1099-1108.
    13. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    14. Tong, Shuiguang & Cheng, Zhewu & Cong, Feiyun & Tong, Zheming & Zhang, Yidong, 2018. "Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 125(C), pages 73-86.
    15. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    16. Akbari, Ata D. & Mahmoudi, Seyed M.S., 2014. "Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle," Energy, Elsevier, vol. 78(C), pages 501-512.
    17. Okazaki, Toru, 2020. "Electric thermal energy storage and advantage of rotating heater having synchronous inertia," Renewable Energy, Elsevier, vol. 151(C), pages 563-574.
    18. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    19. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    20. Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2020. "An alternative sequence of operation for Pumped-Hydro Compressed Air Energy Storage (PH-CAES) systems," Energy, Elsevier, vol. 191(C).
    21. Alharbi, Sattam & Elsayed, Mohamed L. & Chow, Louis C., 2020. "Exergoeconomic analysis and optimization of an integrated system of supercritical CO2 Brayton cycle and multi-effect desalination," Energy, Elsevier, vol. 197(C).
    22. Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
    23. Pimm, Andrew J. & Garvey, Seamus D. & de Jong, Maxim, 2014. "Design and testing of Energy Bags for underwater compressed air energy storage," Energy, Elsevier, vol. 66(C), pages 496-508.
    24. Li, Yi & Yu, Hao & Li, Yi & Liu, Yaning & Zhang, Guijin & Tang, Dong & Jiang, Zhongming, 2020. "Numerical study on the hydrodynamic and thermodynamic properties of compressed carbon dioxide energy storage in aquifers," Renewable Energy, Elsevier, vol. 151(C), pages 1318-1338.
    25. Sarkar, Jahar, 2009. "Second law analysis of supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 34(9), pages 1172-1178.
    26. Wang, Mingkun & Zhao, Pan & Yang, Yi & Dai, Yiping, 2015. "Performance analysis of energy storage system based on liquid carbon dioxide with different configurations," Energy, Elsevier, vol. 93(P2), pages 1931-1942.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yu, Mingzhe & Wang, Yan, 2023. "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," Energy, Elsevier, vol. 263(PB).
    2. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
    3. Zhang, Tianhang & Qin, Shusong & Wei, Guohua & Xie, Min & Peng, Yirui & Tang, Zhipei & Sun, Qiaoqun & Du, Qian & Feng, Dongdong & Gao, Jianmin & Li, Ximei & Zhang, Yu, 2023. "Thermodynamic analysis of a novel trans-critical compressed carbon dioxide energy storage system based on 13X zeolite temperature swing adsorption," Energy, Elsevier, vol. 282(C).
    4. Veyron, Mathilde & Voirand, Antoine & Mion, Nicolas & Maragna, Charles & Mugnier, Daniel & Clausse, Marc, 2022. "Dynamic exergy and economic assessment of the implementation of seasonal underground thermal energy storage in existing solar district heating," Energy, Elsevier, vol. 261(PA).
    5. Huang, Qingxi & Feng, Biao & Liu, Shengchun & Ma, Cuiping & Li, Hailong & Sun, Qie, 2023. "Dynamic operating characteristics of a compressed CO2 energy storage system," Applied Energy, Elsevier, vol. 341(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Gang & Lu, Xiaochen & Chen, Kang & Zhang, Yicen & Han, Zihao & Yu, Haibin & Dai, Yiping, 2022. "Comparative analysis on design and off-design performance of novel cascade CO2 combined cycles for gas turbine waste heat utilization," Energy, Elsevier, vol. 254(PA).
    2. Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).
    3. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Huang, Rui & Zhou, Kang & Liu, Zhan, 2022. "Reduction on the inefficiency of heat recovery storage in a compressed carbon dioxide energy storage system," Energy, Elsevier, vol. 244(PB).
    5. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    6. Wang, Xurong & Yang, Yi & Zheng, Ya & Dai, Yiping, 2017. "Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application," Energy, Elsevier, vol. 119(C), pages 971-982.
    7. Ghorbani, Bahram & Salehi, Gholamreza & Ebrahimi, Armin & Taghavi, Masoud, 2021. "Energy, exergy and pinch analyses of a novel energy storage structure using post-combustion CO2 separation unit, dual pressure Linde-Hampson liquefaction system, two-stage organic Rankine cycle and ge," Energy, Elsevier, vol. 233(C).
    8. Fu, Hailun & He, Qing & Song, Jintao & Shi, Xinping & Hao, Yinping & Du, Dongmei & Liu, Wenyi, 2021. "Thermodynamic of a novel advanced adiabatic compressed air energy storage system with variable pressure ratio coupled organic rankine cycle," Energy, Elsevier, vol. 227(C).
    9. Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
    10. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    11. Fan, Gang & Du, Yang & Li, Hang & Dai, Yiping, 2021. "Off-design behavior investigation of the combined supercritical CO2 and organic Rankine cycle," Energy, Elsevier, vol. 237(C).
    12. Wan, Yuke & Wu, Chuang & Liu, Yu & Liu, Chao & Li, Hang & Wang, Jiangfeng, 2023. "A technical feasibility study of a liquid carbon dioxide energy storage system: Integrated component design and off-design performance analysis," Applied Energy, Elsevier, vol. 350(C).
    13. Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
    14. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    15. Wang, Shun-sen & Wu, Chuang & Li, Jun, 2018. "Exergoeconomic analysis and optimization of single-pressure single-stage and multi-stage CO2 transcritical power cycles for engine waste heat recovery: A comparative study," Energy, Elsevier, vol. 142(C), pages 559-577.
    16. Tozlu, Alperen & Abuşoğlu, Ayşegül & Özahi, Emrah, 2018. "Thermoeconomic analysis and optimization of a Re-compression supercritical CO2 cycle using waste heat of Gaziantep Municipal Solid Waste Power Plant," Energy, Elsevier, vol. 143(C), pages 168-180.
    17. Xinyu Miao & Haochun Zhang & Qi Wang & Wenbo Sun & Yan Xia, 2022. "Thermodynamic, Exergoeconomic and Multi-Objective Analyses of Supercritical N 2 O-He Recompression Brayton Cycle for a Nuclear Spacecraft Application," Energies, MDPI, vol. 15(21), pages 1-31, November.
    18. Lu, Junhui & Cao, Haishan & Li, JunMing, 2020. "Energy and cost estimates for separating and capturing CO2 from CO2/H2O using condensation coupled with pressure/vacuum swing adsorption," Energy, Elsevier, vol. 202(C).
    19. Rovira, Antonio & Muñoz, Marta & Sánchez, Consuelo & Martínez-Val, José María, 2015. "Proposal and study of a balanced hybrid Rankine–Brayton cycle for low-to-moderate temperature solar power plants," Energy, Elsevier, vol. 89(C), pages 305-317.
    20. Liu, Zhan & Liu, Xu & Zhang, Weifeng & Yang, Shanju & Li, Hailong & Yang, Xiaohu, 2022. "Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.