IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923011613.html
   My bibliography  Save this article

A technical feasibility study of a liquid carbon dioxide energy storage system: Integrated component design and off-design performance analysis

Author

Listed:
  • Wan, Yuke
  • Wu, Chuang
  • Liu, Yu
  • Liu, Chao
  • Li, Hang
  • Wang, Jiangfeng

Abstract

Liquid carbon dioxide (CO2) energy storage (LCES) system is emerging as a promising solution for high energy storage density and smooth power fluctuations. This paper investigates the design and off-design performances of a LCES system under different operation strategies to reveal the coupling matching regulation mechanism of the charging and discharging processes. An off-design performance prediction model is developed based on preliminary designs of turbomachinery components and heat exchangers to evaluate the feasibility of the LCES system. The performances of the charging and discharging processes are analyzed under different load levels with two operation strategies: constant pressure charging and constant pressure discharging (CP-CP) operation strategy, and constant pressure charging and sliding pressure discharging (CP-SP) operation strategy. Results show that the LCES system has a round trip efficiency of 61.83% and an energy storage density of 21.92 kW·h·m−3 under the rated condition. As the input load level increases from 80% to 120%, the maximum charging time of the system decreases from 5.15 h to 3.36 h under the constant pressure operation strategy. When the output load level increases from 70% to 120%, the maximum discharging time of the system decreases from 5.48 h to 3.31 h under the constant pressure operation strategy and from 5.60 h to 3.30 h under the sliding pressure operation strategy. Besides, the round trip efficiency of the LCES system increases first and then decreases as both input and output load levels rise, while the energy storage density of the system follows a parabolic curve only with an increase in the output load levels. For better system performance, the CP-SP operation strategy and CP-CP operation strategy are more suitable for the system with output load levels of 70–100% and 100–120%, respectively. These achievements will provide a valuable reference for the stable operation of the LCES under off-design conditions.

Suggested Citation

  • Wan, Yuke & Wu, Chuang & Liu, Yu & Liu, Chao & Li, Hang & Wang, Jiangfeng, 2023. "A technical feasibility study of a liquid carbon dioxide energy storage system: Integrated component design and off-design performance analysis," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011613
    DOI: 10.1016/j.apenergy.2023.121797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923011613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lou, Juwei & Wang, Jiangfeng & Chen, Liangqi & Wang, Yikai & Zhao, Pan & Wang, Shunsen, 2023. "Multi-objective optimization and off-design performance evaluation of coaxial turbomachines for a novel energy storage-based recuperated S–CO2 Brayton cycle driven by nuclear energy," Energy, Elsevier, vol. 275(C).
    2. Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
    3. Qing, He & Lijian, Wang & Qian, Zhou & Chang, Lu & Dongmei, Du & Wenyi, Liu, 2019. "Thermodynamic analysis and optimization of liquefied air energy storage system," Energy, Elsevier, vol. 173(C), pages 162-173.
    4. Hu, Dongshuai & Zheng, Ya & Wu, Yi & Li, Saili & Dai, Yiping, 2015. "Off-design performance comparison of an organic Rankine cycle under different control strategies," Applied Energy, Elsevier, vol. 156(C), pages 268-279.
    5. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
    7. Cui, Shuangshuang & Song, Jintao & Wang, Tingting & Liu, Yixue & He, Qing & Liu, Wenyi, 2021. "Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system," Energy, Elsevier, vol. 235(C).
    8. Chen, Kang & Han, Zihao & Fan, Gang & Zhang, Yicen & Yu, Haibin & Dai, Yiping, 2023. "Optimum design point exploration and performance analysis of a novel CO2 power generation system for LNG cold energy recovery: Considering the temperature fluctuation of heat source," Energy, Elsevier, vol. 275(C).
    9. Hu, Lian & Chen, Deqi & Huang, Yanping & Li, Le & Cao, Yiding & Yuan, Dewen & Wang, Junfeng & Pan, Liangming, 2015. "Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor," Energy, Elsevier, vol. 89(C), pages 874-886.
    10. Xu, Wenpan & Zhao, Pan & Gou, Feifei & Liu, Aijie & Wu, Wenze & Wang, Jiangfeng, 2022. "Thermo-economic analysis of a combined cooling, heating and power system based on self-evaporating liquid carbon dioxide energy storage," Applied Energy, Elsevier, vol. 326(C).
    11. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    12. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    13. Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
    14. Jiang, Yuan & Liese, Eric & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2018. "Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles," Applied Energy, Elsevier, vol. 231(C), pages 1019-1032.
    15. Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
    16. Pimm, Andrew J. & Garvey, Seamus D. & de Jong, Maxim, 2014. "Design and testing of Energy Bags for underwater compressed air energy storage," Energy, Elsevier, vol. 66(C), pages 496-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Tianyu & Cao, Yue & Si, Fengqi & Chua, Kian Jon, 2024. "Off-design characteristics and operation strategy analysis of a compressed carbon dioxide energy storage system coupled with a combined heating and power plant," Energy, Elsevier, vol. 303(C).
    2. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Junrong & Li, Qibin & Werle, Sebastian & Wang, Shukun & Yu, Haoshui, 2024. "Development and comprehensive thermo-economic analysis of a novel compressed CO2 energy storage system integrated with high-temperature thermal energy storage," Energy, Elsevier, vol. 303(C).
    2. He, Tianyu & Cao, Yue & Si, Fengqi & Chua, Kian Jon, 2024. "Off-design characteristics and operation strategy analysis of a compressed carbon dioxide energy storage system coupled with a combined heating and power plant," Energy, Elsevier, vol. 303(C).
    3. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
    4. Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
    5. Zhang, Tianhang & Zhang, Shuqi & Gao, Jianmin & Li, Ximei & Du, Qian & Zhang, Yu & Feng, Dongdong & Sun, Qiaoqun & Peng, Yirui & Tang, Zhipei & Xie, Min & Wei, Guohua, 2023. "Feasibility assessment of a novel compressed carbon dioxide energy storage system based on 13X zeolite temperature swing adsorption: Thermodynamic and economic analysis," Applied Energy, Elsevier, vol. 348(C).
    6. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    7. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
    9. Ghorbani, Bahram & Salehi, Gholamreza & Ebrahimi, Armin & Taghavi, Masoud, 2021. "Energy, exergy and pinch analyses of a novel energy storage structure using post-combustion CO2 separation unit, dual pressure Linde-Hampson liquefaction system, two-stage organic Rankine cycle and ge," Energy, Elsevier, vol. 233(C).
    10. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).
    11. Cui, Shuangshuang & He, Qing & Shi, Xingping & Liu, Yixue & Du, Dongmei, 2021. "Dynamic characteristics analysis for energy release process of liquid air energy storage system," Renewable Energy, Elsevier, vol. 180(C), pages 744-755.
    12. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    13. Osman Özkaraca & Pınar Keçebaş & Cihan Demircan & Ali Keçebaş, 2017. "Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm," Energies, MDPI, vol. 10(11), pages 1-28, October.
    14. Shi, Xingping & He, Qing & Liu, Yixue & An, Xugang & Zhang, Qianxu & Du, Dongmei, 2024. "Thermodynamic and techno-economic analysis of a novel compressed air energy storage system coupled with coal-fired power unit," Energy, Elsevier, vol. 292(C).
    15. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    16. Ben-Ran Fu, 2016. "A Flow Rate Control Approach on Off-Design Analysis of an Organic Rankine Cycle System," Energies, MDPI, vol. 9(9), pages 1-9, September.
    17. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    18. Gao, Ziyu & Zhang, Xinjing & Li, Xiaoyu & Xu, Yujie & Chen, Haisheng, 2023. "Thermodynamic analysis of isothermal compressed air energy storage system with droplets injection," Energy, Elsevier, vol. 284(C).
    19. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    20. Oh, Jinwoo & Park, Yunjae & Lee, Hoseong, 2022. "Development of a fully deterministic simulation model for organic Rankine cycle operating under off-design conditions," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.