IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics0306261922013526.html
   My bibliography  Save this article

Energy management strategy of hybrid energy storage based on Pareto optimality

Author

Listed:
  • Wang, Huaqing
  • Xie, Zhuoshi
  • Pu, Lei
  • Ren, Zhongrui
  • Zhang, Yaoyu
  • Tan, Zhongfu

Abstract

With the effectiveness of carbon emission reduction and the trend of clean energy utilization, installed photovoltaic (PV) capacity is increasing rapidly. The multi-energy coupling system (MECS), including hybrid energy storage, can effectively reduce the volatility of PV output and reduce its reliance on the grid. An MECS model is constructed, with objectives of carbon emission reduction, economics, and reliability. The NSGA-Ⅱ algorithm is used and the Pareto frontier of optimal solutions is obtained. The calculation example proved the validity of the model. The energy storage ecosystem composed of battery (BAT), hydrogen storage (HYS), and heat storage (HS), can effectively reduce the BAT capacity configuration. The integrated heat system can increase the energy efficiency by approximately 29%. The system revenue of the reliability optimal scheme (ROS) is 3,305 thousand yuan less than the multi-criteria optimal scheme (MOS); however, its reliability is better than that of MOS, as illustrated by the standard deviation reduction of grid interaction by 4.78%.The energy management strategy has been proven to be feasible because the system can find better reliability and economy from PV, energy storage planning, arbitrage between purchase and sale price differences, and electricity-hydrogen-heat conversion processes.

Suggested Citation

  • Wang, Huaqing & Xie, Zhuoshi & Pu, Lei & Ren, Zhongrui & Zhang, Yaoyu & Tan, Zhongfu, 2022. "Energy management strategy of hybrid energy storage based on Pareto optimality," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013526
    DOI: 10.1016/j.apenergy.2022.120095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    2. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
    3. Cao, Sunliang & Alanne, Kari, 2018. "The techno-economic analysis of a hybrid zero-emission building system integrated with a commercial-scale zero-emission hydrogen vehicle," Applied Energy, Elsevier, vol. 211(C), pages 639-661.
    4. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    5. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    6. Devabhaktuni, Vijay & Alam, Mansoor & Shekara Sreenadh Reddy Depuru, Soma & Green, Robert C. & Nims, Douglas & Near, Craig, 2013. "Solar energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 555-564.
    7. Lin, Boqiang & Ge, Jiamin, 2021. "Does institutional freedom matter for global forest carbon sinks in the face of economic development disparity?," China Economic Review, Elsevier, vol. 65(C).
    8. Sun, Hongyue & Ebadi, Abdol Ghaffar & Toughani, Mohsen & Nowdeh, Saber Arabi & Naderipour, Amirreza & Abdullah, Aldrin, 2022. "Designing framework of hybrid photovoltaic-biowaste energy system with hydrogen storage considering economic and technical indices using whale optimization algorithm," Energy, Elsevier, vol. 238(PA).
    9. Cao, Sunliang & Alanne, Kari, 2015. "Technical feasibility of a hybrid on-site H2 and renewable energy system for a zero-energy building with a H2 vehicle," Applied Energy, Elsevier, vol. 158(C), pages 568-583.
    10. Zupančič, Jernej & Filipič, Bogdan & Gams, Matjaž, 2020. "Genetic-programming-based multi-objective optimization of strategies for home energy-management systems," Energy, Elsevier, vol. 203(C).
    11. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2020. "Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage," Energy, Elsevier, vol. 213(C).
    12. Abdelshafy, Alaaeldin M. & Jurasz, Jakub & Hassan, Hamdy & Mohamed, Abdelfatah M., 2020. "Optimized energy management strategy for grid connected double storage (pumped storage-battery) system powered by renewable energy resources," Energy, Elsevier, vol. 192(C).
    13. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    14. Wei, Yongmei & Ye, Qi & Ding, Yihong & Ai, Bingjun & Tan, Qinliang & Song, Wenda, 2021. "Optimization model of a thermal-solar-wind power planning considering economic and social benefits," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Gaiqiang & Su, Yuxin & Huo, Lijuan & Guo, Dongpeng & Wu, Yusi, 2025. "A multi-objective synergistic optimization model considering the water-energy-food-carbon nexus and bioenergy," Agricultural Water Management, Elsevier, vol. 312(C).
    2. Tian, Weiyong & Zhang, Xiaohui & Zhou, Peng & Guo, Ruixue, 2025. "Review of energy management technologies for unmanned aerial vehicles powered by hydrogen fuel cell," Energy, Elsevier, vol. 323(C).
    3. Jin, Lingkang & Rossi, Mosè & Monforti Ferrario, Andrea & Mennilli, Francesca & Comodi, Gabriele, 2025. "Designing hybrid energy storage systems for steady green hydrogen production in residential areas: A GIS-based framework," Applied Energy, Elsevier, vol. 389(C).
    4. Robert Garner & Zahir Dehouche, 2023. "Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community," Energies, MDPI, vol. 16(21), pages 1-23, October.
    5. Ye, Songtao & An, Dou & Wang, Chun & Zhang, Tao & Xi, Huan, 2025. "Towards fast multi-scale state estimation for retired battery reusing via Pareto-efficient," Energy, Elsevier, vol. 319(C).
    6. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong, 2023. "Multi-stage distributionally robust optimization for hybrid energy storage in regional integrated energy system considering robustness and nonanticipativity," Energy, Elsevier, vol. 277(C).
    7. Fuwu Yan & Jinhai Wang & Changqing Du & Min Hua, 2022. "Multi-Objective Energy Management Strategy for Hybrid Electric Vehicles Based on TD3 with Non-Parametric Reward Function," Energies, MDPI, vol. 16(1), pages 1-17, December.
    8. Tu, Yunbo & Meng, Xinzhu & Alzahrani, Abdullah Khames & Zhang, Tonghua, 2023. "Multi-objective optimization and nonlinear dynamics for sub-healthy COVID-19 epidemic model subject to self-diffusion and cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Lyu, Chenghao & Wang, Weiquan & Wang, Junyue & Bai, Yilin & Song, Zhengxiang & Wang, Wei & Meng, Jinhao, 2024. "The role of co-optimization in trading off cost and frequency regulation service for industrial microgrids," Applied Energy, Elsevier, vol. 375(C).
    10. Changxing Yang & Xiaozhu Li & Laijun Chen & Shengwei Mei, 2024. "Intra-Day and Seasonal Peak Shaving Oriented Operation Strategies for Electric–Hydrogen Hybrid Energy Storage in Isolated Energy Systems," Sustainability, MDPI, vol. 16(16), pages 1-18, August.
    11. Gao, Yuan & Liu, Mingzhe & Hu, Zehuan & Yamate, Shun & Otomo, Junichiro & Chen, Wei-An & O’Neill, Zheng, 2025. "Quantitative analysis of energy justice in demand response: Insights from real residential data in Texas, USA," Renewable Energy, Elsevier, vol. 242(C).
    12. Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Ma, Ziyao & Huang, Jiajin, 2024. "Equilibrium configuration strategy of vehicle-to-grid-based electric vehicle charging stations in low-carbon resilient distribution networks," Applied Energy, Elsevier, vol. 361(C).
    13. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    14. Shen, Weijie & Zeng, Bo & Zeng, Ming, 2023. "Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid energy storage system," Energy, Elsevier, vol. 283(C).
    15. Liu, Jicheng & Lu, Chaoran & Ma, Xuying & Yang, Xu & Sun, Jiakang & Wang, Yan, 2025. "Economic effects analysis model of electro-hydrogen coupling system under energy internet in China," Energy, Elsevier, vol. 318(C).
    16. He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    2. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
    3. Rang Tu & Zichen Guo & Lanbin Liu & Siqi Wang & Xu Yang, 2025. "Reviews of Photovoltaic and Energy Storage Systems in Buildings for Sustainable Power Generation and Utilization from Perspectives of System Integration and Optimization," Energies, MDPI, vol. 18(11), pages 1-46, May.
    4. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    5. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    6. Alqahtani, Bader & Yang, Jin & Paul, Manosh C., 2024. "A techno-economic-environmental assessment of a hybrid-renewable pumped hydropower energy storage system: A case study of Saudi Arabia," Renewable Energy, Elsevier, vol. 232(C).
    7. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    8. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
    10. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    11. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    13. Liu, Jia & Ma, Tao & Wu, Huijun & Yang, Hongxing, 2023. "Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles," Applied Energy, Elsevier, vol. 331(C).
    14. Berrada, Asmae & Loudiyi, Khalid & Garde, Raquel, 2017. "Dynamic modeling of gravity energy storage coupled with a PV energy plant," Energy, Elsevier, vol. 134(C), pages 323-335.
    15. Fan, Yubin & Zhang, Chunwei & Jiang, Long & Zhang, Xuejun & Qiu, Limin, 2022. "Exploration on two-stage latent thermal energy storage for heat recovery in cryogenic air separation purification system," Energy, Elsevier, vol. 239(PB).
    16. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    17. Shboul, Bashar, 2025. "Novel design of hybrid dish Stirling engine and FC-electrolyzer system for synergistic power and green hydrogen solutions: A 3E performance evaluation," Energy, Elsevier, vol. 318(C).
    18. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    19. Zehra, Syeda Shafia & Ur Rahman, Aqeel & Ahmad, Iftikhar, 2022. "Fuzzy-barrier sliding mode control of electric-hydrogen hybrid energy storage system in DC microgrid: Modelling, management and experimental investigation," Energy, Elsevier, vol. 239(PD).
    20. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.