IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007059.html
   My bibliography  Save this article

Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm

Author

Listed:
  • He, Hongwen
  • Su, Qicong
  • Huang, Ruchen
  • Niu, Zegong

Abstract

Due to the complex driving conditions faced by hybrid electric tracked vehicles, energy management is crucial for improving fuel economy. However, developing an energy management strategy (EMS) is a time-consuming and labor-intensive task, which is challenging to generalize across different driving tasks. To solve this problem and shorten the development cycle of EMSs, this article proposes a novel transferable energy management framework for a series hybrid electric tracked vehicle (SHETV) across motion dimensions. To fully reuse the learned knowledge from longitudinal motion into both longitudinal and lateral motion, this framework merges transfer learning (TL) into the state-of-the-art deep reinforcement learning (DRL) algorithm, soft actor-critic (SAC), to formulate a novel deep transfer reinforcement learning (DTRL) method, with the transfer of both the neural networks and the pre-trained experience replay buffer. Simulation results indicate that the proposed EMS accelerates the convergence speed by 75.38%, enhances the learning ability by 19.05%, and improves the fuel economy by 5.08% compared to the baseline EMS. This article contributes to correlating different energy management tasks and reusing the existing EMS for the rapid development of a new EMS of the hybrid electric tracked vehicle.

Suggested Citation

  • He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007059
    DOI: 10.1016/j.energy.2024.130933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.