IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544221000086.html
   My bibliography  Save this article

A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables

Author

Listed:
  • Meka, Rajitha
  • Alaeddini, Adel
  • Bhaganagar, Kiran

Abstract

Short-term (less than 1 h) forecast of the power generated by wind turbines in a wind farm is extremely challenging due to the lack of reliable data from meteorological towers and numerical weather model outputs at these timescales. A robust deep learning model is developed for short-term forecasts of wind turbine generated power in a wind farm using the state-of-the-art temporal convolutional networks (TCN) to simultaneously capture the temporal dynamics of the wind turbine power and relationship among the local meteorological variables. An orthogonal array tuning method based on the Taguchi design of experiments is utilized to optimize the hyperparameters of the proposed TCN model. The proposed TCN model is validated using twelve months of data from a 130 MW utility-scale wind farm with 86 wind turbines in comparison with some of the existing methods in the literature. The power curves obtained from the proposed TCN model show consistent improvements over existing methods at all wind speeds.

Suggested Citation

  • Meka, Rajitha & Alaeddini, Adel & Bhaganagar, Kiran, 2021. "A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000086
    DOI: 10.1016/j.energy.2021.119759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221000086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nielson, Jordan & Bhaganagar, Kiran & Meka, Rajitha & Alaeddini, Adel, 2020. "Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction," Energy, Elsevier, vol. 190(C).
    2. Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
    3. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    4. Chao Fu & Guo-Quan Li & Kuo-Ping Lin & Hui-Juan Zhang, 2019. "Short-Term Wind Power Prediction Based on Improved Chicken Algorithm Optimization Support Vector Machine," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    5. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    6. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.
    7. Xiaoyu Shi & Xuewen Lei & Qiang Huang & Shengzhi Huang & Kun Ren & Yuanyuan Hu, 2018. "Hourly Day-Ahead Wind Power Prediction Using the Hybrid Model of Variational Model Decomposition and Long Short-Term Memory," Energies, MDPI, vol. 11(11), pages 1-20, November.
    8. Hao, Yan & Tian, Chengshi, 2019. "A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 238(C), pages 368-383.
    9. Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    2. Shin, Heesoo & Rüttgers, Mario & Lee, Sangseung, 2023. "Effects of spatiotemporal correlations in wind data on neural network-based wind predictions," Energy, Elsevier, vol. 279(C).
    3. Meng, Anbo & Xie, Zhifeng & Luo, Jianqiang & Zeng, Ying & Xu, Xuancong & Li, Yidian & Wu, Zhenbo & Zhang, Zhan & Zhu, Jianbin & Xian, Zikang & Li, Chen & Yan, Baiping & Yin, Hao, 2023. "An adaptive variational mode decomposition for wind power prediction using convolutional block attention deep learning network," Energy, Elsevier, vol. 282(C).
    4. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    5. Zhou, Yilin & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2022. "Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Mahsa Dehghan Manshadi & Majid Ghassemi & Seyed Milad Mousavi & Amir H. Mosavi & Levente Kovacs, 2021. "Predicting the Parameters of Vortex Bladeless Wind Turbine Using Deep Learning Method of Long Short-Term Memory," Energies, MDPI, vol. 14(16), pages 1-17, August.
    7. Marek Borowski & Piotr Życzkowski & Klaudia Zwolińska & Rafał Łuczak & Zbigniew Kuczera, 2021. "The Security of Energy Supply from Internal Combustion Engines Using Coal Mine Methane—Forecasting of the Electrical Energy Generation," Energies, MDPI, vol. 14(11), pages 1-18, May.
    8. Yang, Mao & Wang, Da & Zhang, Wei, 2023. "A short-term wind power prediction method based on dynamic and static feature fusion mining," Energy, Elsevier, vol. 280(C).
    9. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    10. Jeong, Jaeik & Kim, Hongseok, 2021. "DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting," Applied Energy, Elsevier, vol. 294(C).
    11. Ahmad, Tanveer & Zhang, Dongdong, 2022. "A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting," Energy, Elsevier, vol. 239(PB).
    12. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2023. "Wind power forecasting: A hybrid forecasting model and multi-task learning-based framework," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    2. Guangyu Qin & Qingyou Yan & Jingyao Zhu & Chuanbo Xu & Daniel M. Kammen, 2021. "Day-Ahead Wind Power Forecasting Based on Wind Load Data Using Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    3. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    4. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    5. Liu, Xin & Cao, Zheming & Zhang, Zijun, 2021. "Short-term predictions of multiple wind turbine power outputs based on deep neural networks with transfer learning," Energy, Elsevier, vol. 217(C).
    6. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Liu, Hui & Duan, Zhu & Li, Yanfei & Lu, Haibo, 2018. "A novel ensemble model of different mother wavelets for wind speed multi-step forecasting," Applied Energy, Elsevier, vol. 228(C), pages 1783-1800.
    9. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    10. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    12. Zjavka, Ladislav, 2015. "Wind speed forecast correction models using polynomial neural networks," Renewable Energy, Elsevier, vol. 83(C), pages 998-1006.
    13. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    14. Danxiang Wei & Jianzhou Wang & Kailai Ni & Guangyu Tang, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network Combined with Fuzzy Time Series for Energy Forecasting," Energies, MDPI, vol. 12(18), pages 1-38, September.
    15. Yakoub, Ghali & Mathew, Sathyajith & Leal, Joao, 2023. "Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models," Energy, Elsevier, vol. 263(PD).
    16. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    17. Wu, Chunying & Wang, Jianzhou & Chen, Xuejun & Du, Pei & Yang, Wendong, 2020. "A novel hybrid system based on multi-objective optimization for wind speed forecasting," Renewable Energy, Elsevier, vol. 146(C), pages 149-165.
    18. Feng, Cong & Sun, Mucun & Cui, Mingjian & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "Characterizing forecastability of wind sites in the United States," Renewable Energy, Elsevier, vol. 133(C), pages 1352-1365.
    19. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    20. Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.