IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p512-d199090.html
   My bibliography  Save this article

Short-Term Wind Power Prediction Based on Improved Chicken Algorithm Optimization Support Vector Machine

Author

Listed:
  • Chao Fu

    (College of Engineering, Hebei Normal University, Shijiazhuang 050024, China
    Postdoctoral Mobile Station, the PLA Army Engineering University, Shijiazhuang 050000, China)

  • Guo-Quan Li

    (Tangshan Kailuan Thermal Power Co., Ltd., Tangshan 063000, China)

  • Kuo-Ping Lin

    (Institute of Innovation and Circular Economy, Asia University, Taichung 41354, Taiwan
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan)

  • Hui-Juan Zhang

    (School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China)

Abstract

Renewable energy technologies are essential contributors to sustainable energy including renewable energy sources. Wind energy is one of the important renewable energy resources. Therefore, efficient and consistent utilization of wind energy has been an important issue. The wind speed has the characteristics of intermittence and instability. If the wind power is directly connected to the grid, it will impact the voltage and frequency of the power system. Short-term wind power prediction can reduce the impact of wind power on the power grid and the stability of power system operation is guaranteed. In this study, the improved chicken swarm algorithm optimization support vector machine (ICSO-SVM) model is proposed to predict the wind power. The traditional chicken swarm optimization algorithm (CSO) easily falls into a local optimum when solving high-dimensional problems due to its own characteristics. So the CSO algorithm is improved and the ICSO algorithm is developed. In order to verify the validity of the ICSO-SVM model, the following work has been done. (1) The particle swarm optimization (PSO), ICSO, CSO and differential evolution algorithm (DE) are tested respectively by four standard testing functions, and the results are compared. (2) The ICSO-SVM and CSO-SVM models are tested respectively by two sets of wind power data. This study draws the following conclusions: (1) the PSO, CSO, DE and ICSO algorithms are tested by the four standard test functions and the test data are analyzed. By comparing it with the other three optimization algorithms, the ICSO algorithm has the best convergence effect. (2) The number of training samples has an obvious impact on the prediction results. The average relative error percentage and root mean square error (RMSE) values of the ICSO model are smaller than those of CSO-SVM model. Therefore, the ICSO-SVM model can efficiently provide credible short-term predictions for wind power forecasting.

Suggested Citation

  • Chao Fu & Guo-Quan Li & Kuo-Ping Lin & Hui-Juan Zhang, 2019. "Short-Term Wind Power Prediction Based on Improved Chicken Algorithm Optimization Support Vector Machine," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:512-:d:199090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/512/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/512/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    2. Shang, Chuanfu & Wei, Pengcheng, 2018. "Enhanced support vector regression based forecast engine to predict solar power output," Renewable Energy, Elsevier, vol. 127(C), pages 269-283.
    3. Wang, Yun & Wang, Haibo & Srinivasan, Dipti & Hu, Qinghua, 2019. "Robust functional regression for wind speed forecasting based on Sparse Bayesian learning," Renewable Energy, Elsevier, vol. 132(C), pages 43-60.
    4. Zhang, Kequan & Qu, Zongxi & Dong, Yunxuan & Lu, Haiyan & Leng, Wennan & Wang, Jianzhou & Zhang, Wenyu, 2019. "Research on a combined model based on linear and nonlinear features - A case study of wind speed forecasting," Renewable Energy, Elsevier, vol. 130(C), pages 814-830.
    5. Naik, Jyotirmayee & Bisoi, Ranjeeta & Dash, P.K., 2018. "Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression," Renewable Energy, Elsevier, vol. 129(PA), pages 357-383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    2. Wei Sun & Qi Gao, 2019. "Short-Term Wind Speed Prediction Based on Variational Mode Decomposition and Linear–Nonlinear Combination Optimization Model," Energies, MDPI, vol. 12(12), pages 1-27, June.
    3. Hongbo Gao & Shuang Qiu & Jun Fang & Nan Ma & Jiye Wang & Kun Cheng & Hui Wang & Yidong Zhu & Dawei Hu & Hengyu Liu & Jun Wang, 2023. "Short-Term Prediction of PV Power Based on Combined Modal Decomposition and NARX-LSTM-LightGBM," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    4. Dagui Liu & Weiqing Wang & Huie Zhang & Wei Shi & Caiqing Bai & Huimin Zhang, 2023. "Day-Ahead and Intra-Day Optimal Scheduling Considering Wind Power Forecasting Errors," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    5. Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    6. Meka, Rajitha & Alaeddini, Adel & Bhaganagar, Kiran, 2021. "A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables," Energy, Elsevier, vol. 221(C).
    7. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Liu, Hui & Duan, Zhu, 2020. "A vanishing moment ensemble model for wind speed multi-step prediction with multi-objective base model selection," Applied Energy, Elsevier, vol. 261(C).
    3. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    4. Qingyuan Wang & Longnv Huang & Jiehui Huang & Qiaoan Liu & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Hybrid Generative Adversarial Network Model for Ultra Short-Term Wind Speed Prediction," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    5. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    6. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    7. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    8. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    9. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    10. Runhui Lin & Yuan Gui & Zaiyang Xie & Lu Liu, 2019. "Green Governance and International Business Strategies of Emerging Economies’ Multinational Enterprises: A Multiple-Case Study of Chinese Firms in Pollution-Intensive Industries," Sustainability, MDPI, vol. 11(4), pages 1-32, February.
    11. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    12. Xiang Ying & Keke Zhao & Zhiqiang Liu & Jie Gao & Dongxiao He & Xuewei Li & Wei Xiong, 2022. "Wind Speed Prediction via Collaborative Filtering on Virtual Edge Expanding Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, June.
    13. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    14. Li, Chaoshun & Tang, Geng & Xue, Xiaoming & Chen, Xinbiao & Wang, Ruoheng & Zhang, Chu, 2020. "The short-term interval prediction of wind power using the deep learning model with gradient descend optimization," Renewable Energy, Elsevier, vol. 155(C), pages 197-211.
    15. Jianzhong Zhou & Han Liu & Yanhe Xu & Wei Jiang, 2018. "A Hybrid Framework for Short Term Multi-Step Wind Speed Forecasting Based on Variational Model Decomposition and Convolutional Neural Network," Energies, MDPI, vol. 11(9), pages 1-18, August.
    16. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    17. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    18. Yang Hu & Yilin Qiao & Jingchun Chu & Ling Yuan & Lei Pan, 2019. "Joint Point-Interval Prediction and Optimization of Wind Power Considering the Sequential Uncertainties of Stepwise Procedure," Energies, MDPI, vol. 12(11), pages 1-21, June.
    19. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    20. Nie, Ying & Liang, Ni & Wang, Jianzhou, 2021. "Ultra-short-term wind-speed bi-forecasting system via artificial intelligence and a double-forecasting scheme," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:512-:d:199090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.