IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp43-60.html
   My bibliography  Save this article

Robust functional regression for wind speed forecasting based on Sparse Bayesian learning

Author

Listed:
  • Wang, Yun
  • Wang, Haibo
  • Srinivasan, Dipti
  • Hu, Qinghua

Abstract

Accurate wind speed forecasting is helpful for reducing the instantaneous fluctuation of voltage, and also has great practical significance on power dispatching and plan. There are two problems in wind speed forecasting: loss of details when transforming the high-resolution data into the low-resolution data and outliers existing in our data. So, a sparse Bayesian-based robust functional regression model is proposed in this paper. First, both the low-resolution and high-resolution data are considered as inputs to forecast future wind speed. Specifically, besides the historical 10-min mean wind speed, the corresponding functional variables, constructed by wind speed data recorded every 5 s in each 10-min interval, are also taken as inputs to make 10-min-ahead wind speed forecasting. But, not all functional variables contribute to the accurate wind speed forecasts. So, a multi-Laplace prior is given to the corresponding coefficient functions to get sparse solutions, which can reduce the adverse effects of the redundant functional variables on the final forecasting results. Second, a multi-mixture of Gaussians prior is assumed for the forecasting error to enhance the robustness of the forecasting model. Results of spatial-temporal and multi-step-ahead wind speed forecasting show that the proposed model provides more accurate forecasts than the compared models.

Suggested Citation

  • Wang, Yun & Wang, Haibo & Srinivasan, Dipti & Hu, Qinghua, 2019. "Robust functional regression for wind speed forecasting based on Sparse Bayesian learning," Renewable Energy, Elsevier, vol. 132(C), pages 43-60.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:43-60
    DOI: 10.1016/j.renene.2018.07.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    2. Shi, Jing & Guo, Jinmei & Zheng, Songtao, 2012. "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3471-3480.
    3. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    4. Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
    5. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    6. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    7. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    8. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    9. Collazos, Julian A.A. & Dias, Ronaldo & Zambom, Adriano Z., 2016. "Consistent variable selection for functional regression models," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 63-71.
    10. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    11. Zhang, Chi & Wei, Haikun & Zhao, Junsheng & Liu, Tianhong & Zhu, Tingting & Zhang, Kanjian, 2016. "Short-term wind speed forecasting using empirical mode decomposition and feature selection," Renewable Energy, Elsevier, vol. 96(PA), pages 727-737.
    12. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    13. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    14. Jiang, Ping & Wang, Yun & Wang, Jianzhou, 2017. "Short-term wind speed forecasting using a hybrid model," Energy, Elsevier, vol. 119(C), pages 561-577.
    15. Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
    16. Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
    17. Jinliang Zhang & YiMing Wei & Zhong-fu Tan & Wang Ke & Wei Tian, 2017. "A Hybrid Method for Short-Term Wind Speed Forecasting," Sustainability, MDPI, vol. 9(4), pages 1-10, April.
    18. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2017. "Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model," Energy, Elsevier, vol. 118(C), pages 231-245.
    19. Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Influence of the input layer signals of ANNs on wind power estimation for a target site: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1556-1566, April.
    20. Ait Maatallah, Othman & Achuthan, Ajit & Janoyan, Kerop & Marzocca, Pier, 2015. "Recursive wind speed forecasting based on Hammerstein Auto-Regressive model," Applied Energy, Elsevier, vol. 145(C), pages 191-197.
    21. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods," Energy, Elsevier, vol. 36(7), pages 3968-3978.
    22. Zuluaga, Carlos D. & Álvarez, Mauricio A. & Giraldo, Eduardo, 2015. "Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison," Applied Energy, Elsevier, vol. 156(C), pages 321-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingyuan Wang & Longnv Huang & Jiehui Huang & Qiaoan Liu & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Hybrid Generative Adversarial Network Model for Ultra Short-Term Wind Speed Prediction," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    2. Liu, Hui & Yang, Rui & Wang, Tiantian & Zhang, Lei, 2021. "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections," Renewable Energy, Elsevier, vol. 165(P1), pages 573-594.
    3. Liu, Hui & Chen, Chao, 2019. "Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction," Applied Energy, Elsevier, vol. 254(C).
    4. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    5. Noman Khan & Fath U Min Ullah & Ijaz Ul Haq & Samee Ullah Khan & Mi Young Lee & Sung Wook Baik, 2021. "AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy Generation Forecasting," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    6. Fekri, Mohammad Navid & Patel, Harsh & Grolinger, Katarina & Sharma, Vinay, 2021. "Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network," Applied Energy, Elsevier, vol. 282(PA).
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).
    9. Dai, Yeming & Yu, Weijie & Leng, Mingming, 2024. "A hybrid ensemble optimized BiGRU method for short-term photovoltaic generation forecasting," Energy, Elsevier, vol. 299(C).
    10. Zhao, Xinyu & Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Yu, Daren & Chang, Juntao, 2021. "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation," Energy, Elsevier, vol. 234(C).
    11. Xiang Ying & Keke Zhao & Zhiqiang Liu & Jie Gao & Dongxiao He & Xuewei Li & Wei Xiong, 2022. "Wind Speed Prediction via Collaborative Filtering on Virtual Edge Expanding Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, June.
    12. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    13. Liu, Hui & Duan, Zhu, 2020. "A vanishing moment ensemble model for wind speed multi-step prediction with multi-objective base model selection," Applied Energy, Elsevier, vol. 261(C).
    14. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    15. Wei, Danxiang & Wang, Jianzhou & Niu, Xinsong & Li, Zhiwu, 2021. "Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks," Applied Energy, Elsevier, vol. 292(C).
    16. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    17. Shenghua Xiong & Chunfeng Wang & Zhenming Fang & Dan Ma, 2019. "Multi-Step-Ahead Carbon Price Forecasting Based on Variational Mode Decomposition and Fast Multi-Output Relevance Vector Regression Optimized by the Multi-Objective Whale Optimization Algorithm," Energies, MDPI, vol. 12(1), pages 1-21, January.
    18. Zhang, Jinliang & Wei, Yiming & Tan, Zhongfu, 2020. "An adaptive hybrid model for short term wind speed forecasting," Energy, Elsevier, vol. 190(C).
    19. Chao Fu & Guo-Quan Li & Kuo-Ping Lin & Hui-Juan Zhang, 2019. "Short-Term Wind Power Prediction Based on Improved Chicken Algorithm Optimization Support Vector Machine," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    20. Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    3. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    4. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang & Zhang, Yixin, 2015. "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 78(C), pages 374-385.
    5. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    6. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    7. Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.
    8. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    9. Jiang, Ping & Yang, Hufang & Heng, Jiani, 2019. "A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting," Applied Energy, Elsevier, vol. 235(C), pages 786-801.
    10. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    11. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    12. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    13. Li, Jingrui & Wang, Jianzhou & Zhang, Haipeng & Li, Zhiwu, 2022. "An innovative combined model based on multi-objective optimization approach for forecasting short-term wind speed: A case study in China," Renewable Energy, Elsevier, vol. 201(P1), pages 766-779.
    14. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    15. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    16. He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.
    17. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    18. Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
    19. Sun, Fei & Jin, Tongdan, 2022. "A hybrid approach to multi-step, short-term wind speed forecasting using correlated features," Renewable Energy, Elsevier, vol. 186(C), pages 742-754.
    20. Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:43-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.