IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i1p147-d194435.html
   My bibliography  Save this article

Multi-Step-Ahead Carbon Price Forecasting Based on Variational Mode Decomposition and Fast Multi-Output Relevance Vector Regression Optimized by the Multi-Objective Whale Optimization Algorithm

Author

Listed:
  • Shenghua Xiong

    (College of Management and Economics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Chunfeng Wang

    (College of Management and Economics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
    Financial Engineering Research Center, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Zhenming Fang

    (Financial Engineering Research Center, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Dan Ma

    (College of Management and Economics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China)

Abstract

The accurate and stable forecasting of carbon prices is vital for governors to make policies and essential for market participants to make investment decisions, which is important for promoting the development of carbon markets and reducing carbon emissions in China. However, it is challenging to improve the carbon price forecasting accuracy due to its non-linearity and non-stationary characteristics, especially in multi-step-ahead forecasting. In this paper, a hybrid multi-step-ahead forecasting model based on variational mode decomposition (VMD), fast multi-output relevance vector regression (FMRVR), and the multi-objective whale optimization algorithm (MOWOA) is proposed. VMD is employed to extract the primary mode for the carbon price. Then, FMRVR, which is used as the forecasting module, is built on the preprocessed data. To achieve high accuracy and stability, the MOWOA is utilized to optimize the kernel parameter and input the lag of the FMRVR. The proposed hybrid forecasting model is applied to carbon price series from three major regional carbon emission exchanges in China. Results show that the proposed VMD-FMRVR-MOWOA model achieves better performance compared to several other multi-output models in terms of forecasting accuracy and stability. The proposed model can be a potential and effective technique for multi-step-ahead carbon price forecasting in China’s three major regional emission exchanges.

Suggested Citation

  • Shenghua Xiong & Chunfeng Wang & Zhenming Fang & Dan Ma, 2019. "Multi-Step-Ahead Carbon Price Forecasting Based on Variational Mode Decomposition and Fast Multi-Output Relevance Vector Regression Optimized by the Multi-Objective Whale Optimization Algorithm," Energies, MDPI, vol. 12(1), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:147-:d:194435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    2. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    3. Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
    4. Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, vol. 11(7), pages 1-17, July.
    5. Rui Wang & Jingrui Li & Jianzhou Wang & Chengze Gao, 2018. "Research and Application of a Hybrid Wind Energy Forecasting System Based on Data Processing and an Optimized Extreme Learning Machine," Energies, MDPI, vol. 11(7), pages 1-29, July.
    6. Wang, Yun & Wang, Haibo & Srinivasan, Dipti & Hu, Qinghua, 2019. "Robust functional regression for wind speed forecasting based on Sparse Bayesian learning," Renewable Energy, Elsevier, vol. 132(C), pages 43-60.
    7. Yunxuan Dong & Jianzhou Wang & Chen Wang & Zhenhai Guo, 2017. "Research and Application of Hybrid Forecasting Model Based on an Optimal Feature Selection System—A Case Study on Electrical Load Forecasting," Energies, MDPI, vol. 10(4), pages 1-27, April.
    8. Paolella, Marc S. & Taschini, Luca, 2008. "An econometric analysis of emission allowance prices," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2022-2032, October.
    9. Xiao, Liye & Shao, Wei & Wang, Chen & Zhang, Kequan & Lu, Haiyan, 2016. "Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting," Applied Energy, Elsevier, vol. 180(C), pages 213-233.
    10. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    11. Ju, Yiyi & Fujikawa, Kiyoshi, 2019. "Modeling the cost transmission mechanism of the emission trading scheme in China," Applied Energy, Elsevier, vol. 236(C), pages 172-182.
    12. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    13. Yuqi Dong & Xuejiao Ma & Chenchen Ma & Jianzhou Wang, 2016. "Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting," Energies, MDPI, vol. 9(12), pages 1-30, December.
    14. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    15. repec:dau:papers:123456789/4598 is not listed on IDEAS
    16. Wang, Jianzhou & Heng, Jiani & Xiao, Liye & Wang, Chen, 2017. "Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting," Energy, Elsevier, vol. 125(C), pages 591-613.
    17. Guoqiang Sun & Tong Chen & Zhinong Wei & Yonghui Sun & Haixiang Zang & Sheng Chen, 2016. "A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks," Energies, MDPI, vol. 9(1), pages 1-16, January.
    18. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a combined model based on multi-objective optimization for electrical load forecasting," Energy, Elsevier, vol. 119(C), pages 1057-1074.
    19. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    20. Jujie Wang & Yanfeng Wang & Yaning Li, 2018. "A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction," Energies, MDPI, vol. 11(2), pages 1-33, February.
    21. Hu, Jianming & Wang, Jianzhou & Xiao, Liqun, 2017. "A hybrid approach based on the Gaussian process with t-observation model for short-term wind speed forecasts," Renewable Energy, Elsevier, vol. 114(PB), pages 670-685.
    22. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
    23. Niu, Tong & Wang, Jianzhou & Zhang, Kequan & Du, Pei, 2018. "Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy," Renewable Energy, Elsevier, vol. 118(C), pages 213-229.
    24. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    25. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    26. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    27. Zhang, Yu & Zhang, Sufang, 2018. "The impacts of GDP, trade structure, exchange rate and FDI inflows on China's carbon emissions," Energy Policy, Elsevier, vol. 120(C), pages 347-353.
    28. Taiyong Li & Min Zhou & Chaoqi Guo & Min Luo & Jiang Wu & Fan Pan & Quanyi Tao & Ting He, 2016. "Forecasting Crude Oil Price Using EEMD and RVM with Adaptive PSO-Based Kernels," Energies, MDPI, vol. 9(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Sun & Junjian Zhang, 2020. "Carbon Price Prediction Based on Ensemble Empirical Mode Decomposition and Extreme Learning Machine Optimized by Improved Bat Algorithm Considering Energy Price Factors," Energies, MDPI, vol. 13(13), pages 1-22, July.
    2. Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    3. Peng Ye & Yong Li & Abu Bakkar Siddik, 2023. "Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm," Energies, MDPI, vol. 16(11), pages 1-39, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    2. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    3. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    4. Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, vol. 11(7), pages 1-17, July.
    5. Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    6. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    7. Chengshi Tian & Yan Hao, 2018. "A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-34, March.
    8. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    9. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    10. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    11. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
    12. Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
    13. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    14. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    16. Wei Sun & Ming Duan, 2019. "Analysis and Forecasting of the Carbon Price in China’s Regional Carbon Markets Based on Fast Ensemble Empirical Mode Decomposition, Phase Space Reconstruction, and an Improved Extreme Learning Machin," Energies, MDPI, vol. 12(2), pages 1-27, January.
    17. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    18. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    19. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    20. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:147-:d:194435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.