IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i2d10.1007_s10479-021-04392-7.html
   My bibliography  Save this article

Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine

Author

Listed:
  • Shanglei Chai

    (Shandong Normal University)

  • Zixuan Zhang

    (Shandong Normal University)

  • Zhen Zhang

    (Dalian University of Technology)

Abstract

With the national goal of “carbon peak by 2030 and carbon neutral by 2060 in China”, studies on carbon prices of China’s Emissions Trading System (ETS) pilots have shown growing interest in the related fields. Carbon price fluctuations reflect the scarcity of carbon resources, and accurate prediction can improve carbon asset management capabilities. Therefore, in order to clarify the dynamics of carbon markets and assign carbon emissions allocation rationally, we propose a hybrid feature-driven forecasting model with the framework of decomposition-reconstruction-prediction-ensemble. In this paper, the non-stationary, nonlinear and chaotic characteristics of carbon prices in China’s ETS pilots have been verified, and then the prediction model is built based on the tested features. Firstly, the original carbon price series are decomposed by Variational Mode Decomposition (VMD), and then reconstructed by Sample Entropy (SE). Next, Extreme Learning Machine (ELM) optimized by Particle Swarm Optimization (PSO) is conducted to predict the subsequences. Lastly, the forecasting series of every subseries are summed to obtain the final results. The empirical results based on carbon prices of China’s ETS pilots proved that the proposed model performs more efficiently than the current benchmark models. As carbon prices are expected to increase across all ETS during the post-COVID-19 recovery stage, the new prediction model will be useful for improving the guiding principles of the existing government policies including the likely introductions of Border Carbon Adjustment (BCA) in the EU and the US, and governing the large global public companies to deliver their “net zero” commitments.

Suggested Citation

  • Shanglei Chai & Zixuan Zhang & Zhen Zhang, 2025. "Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine," Annals of Operations Research, Springer, vol. 345(2), pages 809-830, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-021-04392-7
    DOI: 10.1007/s10479-021-04392-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04392-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04392-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdul Manaf, Norhuda & Qadir, Abdul & Abbas, Ali, 2016. "Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions," Applied Energy, Elsevier, vol. 169(C), pages 912-926.
    2. Nico Bauer & Christoph Bertram & Anselm Schultes & David Klein & Gunnar Luderer & Elmar Kriegler & Alexander Popp & Ottmar Edenhofer, 2020. "Quantification of an efficiency–sovereignty trade-off in climate policy," Nature, Nature, vol. 588(7837), pages 261-266, December.
    3. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2016. "Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk," Energy Economics, Elsevier, vol. 54(C), pages 159-172.
    4. Koch, Nicolas & Fuss, Sabine & Grosjean, Godefroy & Edenhofer, Ottmar, 2014. "Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence," Energy Policy, Elsevier, vol. 73(C), pages 676-685.
    5. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    6. Sun, Wei & Huang, Chenchen, 2020. "A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network," Energy, Elsevier, vol. 207(C).
    7. Daskalakis, George, 2013. "On the efficiency of the European carbon market: New evidence from Phase II," Energy Policy, Elsevier, vol. 54(C), pages 369-375.
    8. Christopher H. Trisos & Cory Merow & Alex L. Pigot, 2020. "The projected timing of abrupt ecological disruption from climate change," Nature, Nature, vol. 580(7804), pages 496-501, April.
    9. Xing Zhang & Chongchong Zhang & Zhuoqun Wei, 2019. "Carbon Price Forecasting Based on Multi-Resolution Singular Value Decomposition and Extreme Learning Machine Optimized by the Moth–Flame Optimization Algorithm Considering Energy and Economic Factors," Energies, MDPI, vol. 12(22), pages 1-23, November.
    10. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Sankaran, Adarsh & Deo, Ravinesh C. & Xiao, Fuyuan & Zhu, Shuyu, 2021. "Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 1031-1044.
    11. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yiming Wei, 2015. "Carbon Price Analysis Using Empirical Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 195-206, February.
    12. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    13. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    14. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    15. Guoqiang Sun & Tong Chen & Zhinong Wei & Yonghui Sun & Haixiang Zang & Sheng Chen, 2016. "A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks," Energies, MDPI, vol. 9(1), pages 1-16, January.
    16. Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
    17. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    18. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    19. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    20. Fan, Xinghua & Lv, Xiangxiang & Yin, Jiuli & Tian, Lixin & Liang, Jiaochen, 2019. "Multifractality and market efficiency of carbon emission trading market: Analysis using the multifractal detrended fluctuation technique," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    21. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yumin Li & Ruiqi Yang & Xiaoman Wang & Jiaming Zhu & Nan Song, 2023. "Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    2. Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    3. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    4. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    5. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    6. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    7. Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
    8. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    9. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    10. Jianguo Zhou & Dongfeng Chen, 2021. "Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    11. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    12. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    13. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    14. Chai, Shanglei & Yang, Xiaoli & Zhang, Zhen & Abedin, Mohammad Zoynul & Lucey, Brian, 2022. "Regional imbalances of market efficiency in China’s pilot emission trading schemes (ETS): A multifractal perspective," Research in International Business and Finance, Elsevier, vol. 63(C).
    15. Jianguo Zhou & Qiqi Wang, 2021. "Forecasting Carbon Price with Secondary Decomposition Algorithm and Optimized Extreme Learning Machine," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    16. Xingmin Zhang & Zhiyong Li & Yiming Zhao & Lan Wang, 2025. "Carbon trading and COVID-19: a hybrid machine learning approach for international carbon price forecasting," Annals of Operations Research, Springer, vol. 345(2), pages 1267-1295, February.
    17. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    18. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    19. Canran Xiao & Yongmei Liu, 2025. "A Multifrequency Data Fusion Deep Learning Model for Carbon Price Prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 436-458, March.
    20. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-021-04392-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.