IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2011-6.html
   My bibliography  Save this paper

A survey of functional principal component analysis

Author

Listed:
  • Han Lin Shang

    ()

Abstract

Advances in data collection and storage have tremendously increased the presence of functional data, whose graphical representations are curves, images or shapes. As a new area of Statistics, functional data analysis extends existing methodologies and theories from the fields of functional analysis, generalized linear models, multivariate data analysis, nonparametric statistics and many others. This paper provides a review into functional data analysis with main emphasis on functional principal component analysis, functional principal component regression, and bootstrap in functional principal component regression. Recent trends as well as open problems in the area are discussed.

Suggested Citation

  • Han Lin Shang, 2011. "A survey of functional principal component analysis," Monash Econometrics and Business Statistics Working Papers 6/11, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2011-6
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp6-11.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Müller, Hans-Georg & Yao, Fang, 2008. "Functional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1534-1544.
    2. repec:taf:gnstxx:v:21:y:2009:i:1:p:19-40 is not listed on IDEAS
    3. Shang, Han Lin & Hyndman, Rob.J., 2011. "Nonparametric time series forecasting with dynamic updating," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
    4. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    5. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    6. Preda, C. & Saporta, G., 2005. "Clusterwise PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 99-108, April.
    7. Daniel Gervini, 2008. "Robust functional estimation using the median and spherical principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 587-600.
    8. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501.
    9. Hervé Cardot, 2003. "Testing Hypotheses in the Functional Linear Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 241-255.
    10. Peter Hall & Céline Vial, 2006. "Assessing the finite dimensionality of functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 689-705.
    11. A. Delaigle & P. Hall & N. Bathia, 2012. "Componentwise classification and clustering of functional data," Biometrika, Biometrika Trust, vol. 99(2), pages 299-313.
    12. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    13. Herve Cardot & Robert Faivre & Michel Goulard, 2003. "Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1185-1199.
    14. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2010. "Inference under functional proportional and common principal component models," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 464-475, February.
    15. Besse, Philippe, 1992. "PCA stability and choice of dimensionality," Statistics & Probability Letters, Elsevier, vol. 13(5), pages 405-410, April.
    16. Lopez-Pintado, Sara & Romo, Juan, 2007. "Depth-based inference for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4957-4968, June.
    17. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    18. Mas, André, 2002. "Weak convergence for the covariance operators of a Hilbertian linear process," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 117-135, May.
    19. Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
    20. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    21. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    22. Ledyard Tucker, 1958. "Determination of parameters of a functional relation by factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(1), pages 19-23, March.
    23. John A. D. Aston & Jeng-Min Chiou & Jonathan P. Evans, 2010. "Linguistic pitch analysis using functional principal component mixed effect models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 297-317.
    24. Hans-Georg Müller & Fang Yao, 2010. "Additive modelling of functional gradients," Biometrika, Biometrika Trust, vol. 97(4), pages 791-805.
    25. Aurore Delaigle & Peter Hall, 2012. "Achieving near perfect classification for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 267-286, March.
    26. Tarpey, Thaddeus, 2007. "Linear Transformations and the k-Means Clustering Algorithm: Applications to Clustering Curves," The American Statistician, American Statistical Association, vol. 61, pages 34-40, February.
    27. Charles Bouveyron & Julien Jacques, 2011. "Model-based clustering of time series in group-specific functional subspaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 281-300, December.
    28. Cuevas, Antonio & Fraiman, Ricardo, 2009. "On depth measures and dual statistics. A methodology for dealing with general data," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 753-766, April.
    29. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    30. Yuko Araki & Sadanori Konishi & Shuichi Kawano & Hidetoshi Matsui, 2009. "Functional regression modeling via regularized Gaussian basis expansions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 811-833, December.
    31. Peter Hall & Mohammad Hosseini-Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126.
    32. Preda, C. & Saporta, G., 2005. "PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 149-158, January.
    33. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    34. Hlubinka, Daniel & Prchal, Lubos, 2007. "Changes in atmospheric radiation from the statistical point of view," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4926-4941, June.
    35. Rob J. Hyndman & Han Lin Shang, 2008. "Rainbow plots, Bagplots and Boxplots for Functional Data," Monash Econometrics and Business Statistics Working Papers 9/08, Monash University, Department of Econometrics and Business Statistics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    2. Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
    3. repec:eee:stapro:v:130:y:2017:i:c:p:42-48 is not listed on IDEAS
    4. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    5. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
    6. Alberto Ohashi & Alexandre B Simas, 2015. "Principal Components Analysis for Semimartingales and Stochastic PDE," Papers 1503.05909, arXiv.org, revised Mar 2016.

    More about this item

    Keywords

    Bootstrap; functional principal component regression; functional time series; Stiefel manifold; Von Mise-Fisher distribution.;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2011-6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Cindy George). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.