IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws120906.html
   My bibliography  Save this paper

Spatial depth-based classification for functional data

Author

Listed:
  • Lillo Rodríguez, Rosa Elvira
  • Galeano San Miguel, Pedro
  • Sguera, Carlo

Abstract

Functional data are becoming increasingly available and tractable because of the last technological advances. We enlarge the number of functional depths by defining two new depth functions for curves. Both depths are based on a spatial approach: the functional spatial depth (FSD), that shows an interesting connection with the functional extension of the notion of spatial quantiles, and the kernelized functional spatial depth (KFSD), which is useful for studying functional samples that require an analysis at a local level. Afterwards, we consider supervised functional classification problems, and in particular we focus on cases in which the samples may contain outlying curves. For these situations, some robust methods based on the use of functional depths are available. By means of a simulation study, we show how FSD and KFSD perform as depth functions for these depth-based methods. The results indicate that a spatial depthbased classification approach may result helpful when the datasets are contaminated, and that in general it is stable and satisfactory if compared with a benchmark procedure such as the functional k-nearest neighbor classifier. Finally, we also illustrate our approach with a real dataset.

Suggested Citation

  • Lillo Rodríguez, Rosa Elvira & Galeano San Miguel, Pedro & Sguera, Carlo, 2012. "Spatial depth-based classification for functional data," DES - Working Papers. Statistics and Econometrics. WS ws120906, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws120906
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/14331/ws120906.pdf?sequence=1
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    2. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
    3. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    4. Cuevas, Antonio & Fraiman, Ricardo, 2009. "On depth measures and dual statistics. A methodology for dealing with general data," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 753-766, April.
    5. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
    6. Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
    7. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    8. Gareth M. James & Trevor J. Hastie, 2001. "Functional linear discriminant analysis for irregularly sampled curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 533-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:csdana:v:115:y:2017:i:c:p:21-34 is not listed on IDEAS
    2. J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
    3. Lillo Rodríguez, Rosa Elvira & Galeano San Miguel, Pedro & Joseph, Esdras, 2013. "The Mahalanobis distance for functional data with applications to classification," DES - Working Papers. Statistics and Econometrics. WS ws131312, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
    5. repec:spr:stpapr:v:58:y:2017:i:4:d:10.1007_s00362-015-0738-3 is not listed on IDEAS
    6. repec:eee:stapro:v:129:y:2017:i:c:p:373-378 is not listed on IDEAS
    7. repec:eee:jmvana:v:163:y:2018:i:c:p:67-79 is not listed on IDEAS

    More about this item

    Keywords

    Outliers;

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws120906. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.