IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws131312.html
   My bibliography  Save this paper

The Mahalanobis distance for functional data with applications to classification

Author

Listed:
  • Lillo Rodríguez, Rosa Elvira
  • Galeano San Miguel, Pedro
  • Joseph, Esdras

Abstract

This paper presents a general notion of Mahalanobis distance for functional data that extends the classical multivariate concept to situations where the observed data are points belonging to curves generated by a stochastic process. More precisely, a new semi-distance for functional observations that generalize the usual Mahalanobis distance for multivariate datasets is introduced. For that, the development uses a regularized square root inverse operator in Hilbert spaces. Some of the main characteristics of the functional Mahalanobis semi-distance are shown. Afterwards, new versions of several well known functional classification procedures are developed using the Mahalanobis distance for functional data as a measure of proximity between functional observations. The performance of several well known functional classification procedures are compared with those methods used in conjunction with the Mahalanobis distance for functional data, with positive results, through a Monte Carlo study and the analysis of two real data examples

Suggested Citation

  • Lillo Rodríguez, Rosa Elvira & Galeano San Miguel, Pedro & Joseph, Esdras, 2013. "The Mahalanobis distance for functional data with applications to classification," DES - Working Papers. Statistics and Econometrics. WS ws131312, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws131312
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/16960/ws131312.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Wang, Xiaohui & Ray, Shubhankar & Mallick, Bani K., 2007. "Bayesian Curve Classification Using Wavelets," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 962-973, September.
    2. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    3. Aurore Delaigle & Peter Hall, 2012. "Achieving near perfect classification for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 267-286, March.
    4. Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
    5. Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
    6. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    7. Amparo Baíllo & Antonio Cuevas & Juan Antonio Cuesta‐Albertos, 2011. "Supervised Classification for a Family of Gaussian Functional Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 480-498, September.
    8. Shin, Hyejin, 2008. "An extension of Fisher's discriminant analysis for stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1191-1216, July.
    9. Peter Hall & Mohammad Hosseini-Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126.
    10. Cristian Preda & Gilbert Saporta & Caroline Lévéder, 2007. "PLS classification of functional data," Computational Statistics, Springer, vol. 22(2), pages 223-235, July.
    11. Gareth M. James & Trevor J. Hastie, 2001. "Functional linear discriminant analysis for irregularly sampled curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 533-550.
    12. Li, Bin & Yu, Qingzhao, 2008. "Classification of functional data: A segmentation approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4790-4800, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
    2. Lillo Rodríguez, Rosa Elvira & Galeano San Miguel, Pedro & Joseph, Esdras, 2015. "Two-sample Hotelling's T² statistics based on the functional Mahalanobis semi-distance," DES - Working Papers. Statistics and Econometrics. WS ws1503, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Keywords

    Classification methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws131312. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.