IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Mahalanobis distance for functional data with applications to classification

Listed author(s):
  • Lillo Rodríguez, Rosa Elvira
  • Galeano San Miguel, Pedro
  • Joseph, Esdras

This paper presents a general notion of Mahalanobis distance for functional data that extends the classical multivariate concept to situations where the observed data are points belonging to curves generated by a stochastic process. More precisely, a new semi-distance for functional observations that generalize the usual Mahalanobis distance for multivariate datasets is introduced. For that, the development uses a regularized square root inverse operator in Hilbert spaces. Some of the main characteristics of the functional Mahalanobis semi-distance are shown. Afterwards, new versions of several well known functional classification procedures are developed using the Mahalanobis distance for functional data as a measure of proximity between functional observations. The performance of several well known functional classification procedures are compared with those methods used in conjunction with the Mahalanobis distance for functional data, with positive results, through a Monte Carlo study and the analysis of two real data examples

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number ws131312.

in new window

Date of creation: May 2013
Handle: RePEc:cte:wsrepe:ws131312
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
  2. Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
  3. Shin, Hyejin, 2008. "An extension of Fisher's discriminant analysis for stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1191-1216, July.
  4. Li, Bin & Yu, Qingzhao, 2008. "Classification of functional data: A segmentation approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4790-4800, June.
  5. Wang, Xiaohui & Ray, Shubhankar & Mallick, Bani K., 2007. "Bayesian Curve Classification Using Wavelets," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 962-973, September.
  6. Aurore Delaigle & Peter Hall, 2012. "Achieving near perfect classification for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 267-286, March.
  7. Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
  8. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
  9. Amparo Baíllo & Antonio Cuevas & Juan Antonio Cuesta‐Albertos, 2011. "Supervised Classification for a Family of Gaussian Functional Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 480-498, 09.
  10. Peter Hall & Mohammad Hosseini-Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126.
  11. Cristian Preda & Gilbert Saporta & Caroline Lévéder, 2007. "PLS classification of functional data," Computational Statistics, Springer, vol. 22(2), pages 223-235, July.
  12. Gareth M. James & Trevor J. Hastie, 2001. "Functional linear discriminant analysis for irregularly sampled curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 533-550.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws131312. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.