IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i6p1231-1261.html
   My bibliography  Save this article

Weak convergence in the functional autoregressive model

Author

Listed:
  • Mas, André

Abstract

The functional autoregressive model is a Markov model taylored for data of functional nature. It revealed fruitful when attempting to model samples of dependent random curves and has been widely studied along the past few years. This article aims at completing the theoretical study of the model by addressing the issue of weak convergence for estimates from the model. The main difficulties stem from an underlying inverse problem as well as from dependence between the data. Traditional facts about weak convergence in non-parametric models appear: the normalizing sequence is not an , a bias term appears. Several original features of the functional framework are pointed out.

Suggested Citation

  • Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:6:p:1231-1261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00090-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. André Mas, 1999. "Normalité asymptotique de l’estimateur empirique de l’opérateur d’autocorrélation d’un processus ARH(1)," Working Papers 99-11, Center for Research in Economics and Statistics.
    2. Philippe C. Besse, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687.
    3. Mas, André & Menneteau, Ludovic, 2003. "Large and moderate deviations for infinite-dimensional autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 241-260, November.
    4. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    5. Menneteau, Ludovic, 2005. "Some laws of the iterated logarithm in Hilbertian autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 405-425, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lillo Rodríguez, Rosa Elvira & Galeano San Miguel, Pedro & Joseph, Esdras, 2013. "The Mahalanobis distance for functional data with applications to classification," DES - Working Papers. Statistics and Econometrics. WS ws131312, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
    3. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    4. Lillo Rodríguez, Rosa Elvira & Galeano San Miguel, Pedro & Joseph, Esdras, 2015. "Two-sample Hotelling's T² statistics based on the functional Mahalanobis semi-distance," DES - Working Papers. Statistics and Econometrics. WS ws1503, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    6. A. Soltani & M. Hashemi, 2011. "Periodically correlated autoregressive Hilbertian processes," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 177-188, May.
    7. Park, Joon Y. & Qian, Junhui, 2012. "Functional regression of continuous state distributions," Journal of Econometrics, Elsevier, vol. 167(2), pages 397-412.
    8. Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
    9. repec:eee:jmvana:v:159:y:2017:i:c:p:168-183 is not listed on IDEAS
    10. A. Berlinet & A. Elamine & A. Mas, 2011. "Local linear regression for functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 1047-1075, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:6:p:1231-1261. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.