IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2005-2.html
   My bibliography  Save this paper

Robust forecasting of mortality and fertility rates: a functional data approach

Author

Listed:
  • Rob J. Hyndman
  • Md. Shahid Ullah

Abstract

We propose a new method for forecasting age-specific mortality and fertility rates observed over time. Our approach allows for smooth functions of age, is robust for outlying years due to wars and epidemics, and provides a modelling framework that is easily adapted to allow for constraints and other information. We combine ideas from functional data analysis, nonparametric smoothing and robust statistics to form a methodology that is widely applicable to any functional time series data, and age-specific mortality and fertility in particular. We show that our model is a generalization of the Lee-Carter model commonly used in mortality and fertility forecasting. The methodology is applied to French mortality data and Australian fertility data, and we show that the forecasts obtained are superior to those from the Lee-Carter method and several of its variants.

Suggested Citation

  • Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2005-2
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2005/wp2-05.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hyndman, R.J. & Koehler, A.B. & Ord, J.K. & Snyder, R.D., 2001. "Prediction Intervals for Exponential Smoothing State Space Models," Monash Econometrics and Business Statistics Working Papers 11/01, Monash University, Department of Econometrics and Business Statistics.
    2. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    3. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    4. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    5. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    6. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    7. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    8. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    9. Lee, Ronald D., 1993. "Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level," International Journal of Forecasting, Elsevier, vol. 9(2), pages 187-202, August.
    10. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    11. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
    12. Bircan Erbas & Rob J. Hyndman & Dorota M. Gertig, 2005. "Forecasting age-specific breast cancer mortality using functional data models," Monash Econometrics and Business Statistics Working Papers 3/05, Monash University, Department of Econometrics and Business Statistics.
    13. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    14. Croux, Christophe & Ruiz-Gazen, Anne, 2005. "High breakdown estimators for principal components: the projection-pursuit approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 206-226, July.
    15. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
    16. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    2. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    3. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    4. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    5. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    6. Ka Kin Lam & Bo Wang, 2021. "Robust Non-Parametric Mortality and Fertility Modelling and Forecasting: Gaussian Process Regression Approaches," Forecasting, MDPI, vol. 3(1), pages 1-21, March.
    7. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    8. Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
    9. Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.
    10. Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
    11. Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
    12. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    13. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
    15. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    16. Farah Yasmeen & Rob J Hyndman & Bircan Erbas, 2010. "Forecasting age-related changes in breast cancer mortality among white and black US women: A functional approach," Monash Econometrics and Business Statistics Working Papers 9/10, Monash University, Department of Econometrics and Business Statistics.
    17. He, Lingyu & Huang, Fei & Shi, Jianjie & Yang, Yanrong, 2021. "Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 14-34.
    18. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    19. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    20. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.

    More about this item

    Keywords

    Fertility Forecasting; Functional Data; Mortality Forecasting; Nonparametric Smoothing; Principal Components; Robustness.;
    All these keywords.

    JEL classification:

    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2005-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.