IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2006-13.html
   My bibliography  Save this paper

Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions

Author

Listed:
  • Heather Booth
  • Rob J Hyndman

    ()

  • Leonie Tickle
  • Piet de Jong

Abstract

We compare the short- to medium-term accuracy of five variants or extensions of the Lee-Carter method for mortality forecasting. These include the original Lee-Carter, the Lee-Miller and Booth-Maindonald-Smith variants, and the more flexible Hyndman-Ullah and De Jong-Tickle extensions. These methods are compared by applying them to sex-specific populations of 10 developed countries using data for 1986-2000 for evaluation. All variants and extensions are more accurate than the original Lee-Carter method for forecasting log death rates, by up to 61%. However, accuracy in log death rates does not necessarily translate into accuracy in life expectancy. There are no significant differences among the five methods in forecast accuracy for life expectancy.

Suggested Citation

  • Heather Booth & Rob J Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Monash Econometrics and Business Statistics Working Papers 13/06, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2006-13
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2006/wp13-06.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    2. John Bongaarts, 2005. "Long-range trends in adult mortality: Models and projection methods," Demography, Springer;Population Association of America (PAA), vol. 42(1), pages 23-49, February.
    3. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    4. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    5. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 379-401, July.
    6. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    7. Piet De Jong & Leonie Tickle, 2006. "Extending Lee-Carter Mortality Forecasting," Mathematical Population Studies, Taylor & Francis Journals, vol. 13(1), pages 1-18.
    8. Arthur Renshaw & Steven Haberman, 2003. "Lee-Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137.
    9. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Functional data; Lee-Carter method; mortality forecasting; nonparametric smoothing; principal components; state space.;

    JEL classification:

    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2006-13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.