IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Stochastic population forecasts using functional data models for mortality, fertility and migration

  • Hyndman, Rob J.
  • Booth, Heather

Age-sex-specific population forecasts are derived through stochastic population renewal using forecasts of mortality, fertility and net migration. Functional data models with time series coefficients are used to model age-specific mortality and fertility rates. As detailed migration data are lacking, net migration by age and sex is estimated as the difference between historic annual population data and successive populations one year ahead derived from a projection using fertility and mortality data. This estimate, which includes error, is also modeled using a functional data model. The three models involve different strengths of the general Box-Cox transformation chosen to minimise out-of-sample forecast error. Uncertainty is estimated from the model, with an adjustment to ensure the one-step-forecast variances are equal to those obtained with historical data. The three models are then used in the Monte Carlo simulation of future fertility, mortality and net migration, which are combined using the cohort-component method to obtain age-specific forecasts of the population by sex. The distribution of forecasts provides probabilistic prediction intervals. The method is demonstrated by making 20-year forecasts using Australian data for the period 1921-2003.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V92-4SBRTH2-1/2/db9f41918a50f5814ac0e5dbca8d794c
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 24 (2008)
Issue (Month): 3 ()
Pages: 323-342

as
in new window

Handle: RePEc:eee:intfor:v:24:y:2008:i:3:p:323-342
Contact details of provider: Web page: http://www.elsevier.com/locate/ijforecast

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
  2. Alho, Juha M., 1992. "The magnitude of error due to different vital processes in population forecasts," International Journal of Forecasting, Elsevier, vol. 8(3), pages 301-314, November.
  3. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
  4. Tom Wilson & Martin Bell, 2004. "Australia's uncertain demographic future," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 11(8), pages 195-234, September.
  5. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
  6. Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454, May.
  7. Andrei Rogers & Luis Castro & Megan Lea, 2005. "Model Migration Schedules: Three Alternative Linear Parameter Estimation Methods," Mathematical Population Studies, Taylor & Francis Journals, vol. 12(1), pages 17-38.
  8. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
  9. Bircan Erbas & Rob J. Hyndman & Dorota M. Gertig, 2005. "Forecasting age-specific breast cancer mortality using functional data models," Monash Econometrics and Business Statistics Working Papers 3/05, Monash University, Department of Econometrics and Business Statistics.
  10. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 379-401, July.
  11. Lee, Ronald D., 1993. "Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level," International Journal of Forecasting, Elsevier, vol. 9(2), pages 187-202, August.
  12. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
  13. Miller, Robert B., 1986. "A bivariate model for total fertility rate and mean age of childbearing," Insurance: Mathematics and Economics, Elsevier, vol. 5(2), pages 133-140, April.
  14. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
  15. Heather Booth & Rob J Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Monash Econometrics and Business Statistics Working Papers 13/06, Monash University, Department of Econometrics and Business Statistics.
  16. Lee, Ronald D., 1992. "Stochastic demographic forecasting," International Journal of Forecasting, Elsevier, vol. 8(3), pages 315-327, November.
  17. Nico Keilman & Dinh Quang Pham, 2004. "Empirical errors and predicted errors in fertility, mortality and migration forecasts in the European Economic Area," Discussion Papers 386, Statistics Norway, Research Department.
  18. Oliver Lipps & Frank Betz, 2004. "Stochastic Population Projection for Germany," MEA discussion paper series 04059, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
  19. Ortega, Jose Antonio & Poncela, Pilar, 2005. "Joint forecasts of Southern European fertility rates with non-stationary dynamic factor models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 539-550.
  20. Jan Hoem & Dan Madien & Jørgen Nielsen & Else-Marie Ohlsen & Hans Hansen & Bo Rennermalm, 1981. "Experiments in modelling recent Danish fertility curves," Demography, Springer, vol. 18(2), pages 231-244, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:24:y:2008:i:3:p:323-342. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.