IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v24y2008i3p323-342.html
   My bibliography  Save this article

Stochastic population forecasts using functional data models for mortality, fertility and migration

Author

Listed:
  • Hyndman, Rob J.
  • Booth, Heather

Abstract

Age-sex-specific population forecasts are derived through stochastic population renewal using forecasts of mortality, fertility and net migration. Functional data models with time series coefficients are used to model age-specific mortality and fertility rates. As detailed migration data are lacking, net migration by age and sex is estimated as the difference between historic annual population data and successive populations one year ahead derived from a projection using fertility and mortality data. This estimate, which includes error, is also modeled using a functional data model. The three models involve different strengths of the general Box-Cox transformation chosen to minimise out-of-sample forecast error. Uncertainty is estimated from the model, with an adjustment to ensure the one-step-forecast variances are equal to those obtained with historical data. The three models are then used in the Monte Carlo simulation of future fertility, mortality and net migration, which are combined using the cohort-component method to obtain age-specific forecasts of the population by sex. The distribution of forecasts provides probabilistic prediction intervals. The method is demonstrated by making 20-year forecasts using Australian data for the period 1921-2003.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
  • Handle: RePEc:eee:intfor:v:24:y:2008:i:3:p:323-342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(08)00031-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ortega, Jose Antonio & Poncela, Pilar, 2005. "Joint forecasts of Southern European fertility rates with non-stationary dynamic factor models," International Journal of Forecasting, Elsevier, pages 539-550.
    2. Andrei Rogers & Luis Castro & Megan Lea, 2005. "Model Migration Schedules: Three Alternative Linear Parameter Estimation Methods," Mathematical Population Studies, Taylor & Francis Journals, pages 17-38.
    3. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, pages 379-401.
    4. Lee, Ronald D., 1992. "Stochastic demographic forecasting," International Journal of Forecasting, Elsevier, pages 315-327.
    5. Miller, Robert B., 1986. "A bivariate model for total fertility rate and mean age of childbearing," Insurance: Mathematics and Economics, Elsevier, pages 133-140.
    6. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, pages 439-454.
    7. Nico Keilman & Dinh Quang Pham, 2004. "Empirical errors and predicted errors in fertility, mortality and migration forecasts in the European Economic Area," Discussion Papers 386, Statistics Norway, Research Department.
    8. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, pages 547-581.
    9. Ludwig, Alexander, 2004. "Improving Tatonnement Methods for Solving Heterogeneous Agent Models," Sonderforschungsbereich 504 Publications 04-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    10. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310, October.
    11. Jan Hoem & Dan Madien & Jørgen Nielsen & Else-Marie Ohlsen & Hans Hansen & Bo Rennermalm, 1981. "Experiments in modelling recent Danish fertility curves," Demography, Springer;Population Association of America (PAA), vol. 18(2), pages 231-244, May.
    12. Bircan Erbas & Rob J. Hyndman & Dorota M. Gertig, 2005. "Forecasting age-specific breast cancer mortality using functional data models," Monash Econometrics and Business Statistics Working Papers 3/05, Monash University, Department of Econometrics and Business Statistics.
    13. Lee, Ronald D., 1993. "Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level," International Journal of Forecasting, Elsevier, pages 187-202.
    14. Alho, Juha M., 1992. "The magnitude of error due to different vital processes in population forecasts," International Journal of Forecasting, Elsevier, pages 301-314.
    15. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, pages 4942-4956.
    16. Tom Wilson & Martin Bell, 2004. "Australia's uncertain demographic future," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 11(8), pages 195-234, September.
    17. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, pages 255-272.
    18. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, pages 4942-4956.
    19. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, pages 439-454.
    20. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, pages 393-411.
    21. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, pages 373-393.
    22. Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:24:y:2008:i:3:p:323-342. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.