IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v9y1993i2p187-202.html
   My bibliography  Save this article

Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level

Author

Listed:
  • Lee, Ronald D.

Abstract

No abstract is available for this item.

Suggested Citation

  • Lee, Ronald D., 1993. "Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level," International Journal of Forecasting, Elsevier, vol. 9(2), pages 187-202, August.
  • Handle: RePEc:eee:intfor:v:9:y:1993:i:2:p:187-202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0169-2070(93)90004-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan J. Auerbach & Ronald Lee, 2009. "Notional Defined Contribution Pension Systems in a Stochastic Context: Design and Stability," NBER Chapters,in: Social Security Policy in a Changing Environment, pages 43-68 National Bureau of Economic Research, Inc.
    2. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    3. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454, May.
    5. Ortega, Jose Antonio & Poncela, Pilar, 2005. "Joint forecasts of Southern European fertility rates with non-stationary dynamic factor models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 539-550.
    6. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    7. Yoichi Okita & Wade Pfau & Giang Long, 2011. "A Stochastic Forecast Model for Japan's Population," Japanese Economy, Taylor & Francis Journals, vol. 38(2), pages 19-44.
    8. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    9. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    10. José A. Ortega & Hans-Peter Kohler, 2002. "Measuring low fertility: rethinking demographic methods," MPIDR Working Papers WP-2002-001, Max Planck Institute for Demographic Research, Rostock, Germany.
    11. Giang, Thanh Long & Pfau, Wade Donald, 2008. "Demographic Changes and Pension Finances in Vietnam," MPRA Paper 9931, University Library of Munich, Germany.
    12. W. Lutz & S. Scherbov, 1997. "Sensitivity Analysis of Expert-Based Probabilistic Population Projections in the Case of Austria," Working Papers ir97048, International Institute for Applied Systems Analysis.
    13. Auerbach, Alan J. & Lee, Ronald, 2011. "Welfare and generational equity in sustainable unfunded pension systems," Journal of Public Economics, Elsevier, vol. 95(1-2), pages 16-27, February.
    14. Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.
    15. Tuljapurkar, Shripad & Boe, Carl, 1999. "Validation, probability-weighted priors, and information in stochastic forecasts," International Journal of Forecasting, Elsevier, vol. 15(3), pages 259-271, July.
    16. Wolfgang Lutz & Sergei Scherbov & Gui Ying Cao & Qiang Ren & Xiaoying Zheng, 2007. "China's uncertain demographic present and future," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 5(1), pages 37-59.
    17. Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
    18. Vanella, Patrizio, 2016. "The Total Fertility Rate in Germany until 2040 - A Stochastic Principal Components Projection based on Age-specific Fertility Rates," Hannover Economic Papers (HEP) dp-579, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    19. Axel Börsch-Supan, 2004. "Global Aging: Issues, Answers, More Questions," MEA discussion paper series 04055, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    20. Rueda, Cristina & Rodríguez, Pilar, 2010. "State space models for estimating and forecasting fertility," International Journal of Forecasting, Elsevier, vol. 26(4), pages 712-724, October.
    21. Vanella, Patrizio, 2017. "Stochastische Prognose demografischer Komponenten auf Basis der Hauptkomponentenanalyse," Hannover Economic Papers (HEP) dp-597, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    22. Ronald Lee & Ryan Edwards, 2002. "The Fiscal Effects of Population Aging in the U.S.: Assessing the Uncertainties," NBER Chapters,in: Tax Policy and the Economy, Volume 16, pages 141-180 National Bureau of Economic Research, Inc.
    23. Ryan D. Edwards & Ronald D. Lee & Michael W. Anderson & Shripad Tuljapurkar & Carl Boe, 2003. "Key Equations in the Tuljapurkar-Lee Model of the Social Security System," Working Papers wp044, University of Michigan, Michigan Retirement Research Center.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:9:y:1993:i:2:p:187-202. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.