IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v95y2005i1p206-226.html
   My bibliography  Save this article

High breakdown estimators for principal components: the projection-pursuit approach revisited

Author

Listed:
  • Croux, Christophe
  • Ruiz-Gazen, Anne

Abstract

Li and Chen (J. Amer. Statist. Assoc. 80 (1985) 759) proposed a method for principal components using projection-pursuit techniques. In classical principal components one searches for directions with maximal variance, and their approach consists of replacing this variance by a robust scale measure. Li and Chen showed that this estimator is consistent, qualitative robust and inherits the breakdown point of the robust scale estimator. We complete their study by deriving the influence function of the estimators for the eigenvectors, eigenvalues and the associated dispersion matrix. Corresponding Gaussian efficiencies are presented as well. Asymptotic normality of the estimators has been treated in a paper of Cui et al. (Biometrika 90 (2003) 953), complementing the results of this paper. Furthermore, a simple explicit version of the projection-pursuit based estimator is proposed and shown to be fast to compute, orthogonally equivariant, and having the maximal finite-sample breakdown point property. We will illustrate the method with a real data example.

Suggested Citation

  • Croux, Christophe & Ruiz-Gazen, Anne, 2005. "High breakdown estimators for principal components: the projection-pursuit approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 206-226, July.
  • Handle: RePEc:eee:jmvana:v:95:y:2005:i:1:p:206-226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00163-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abul Naga, Ramses & Antille, Gerard, 1990. "Stability of robust and non-robust principal components analysis," Computational Statistics & Data Analysis, Elsevier, vol. 10(2), pages 169-174, October.
    2. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    3. Croux, Christophe, 1994. "Efficient high-breakdown M-estimators of scale," Statistics & Probability Letters, Elsevier, vol. 19(5), pages 371-379, April.
    4. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    5. Hossjer, O. & Croux, C. & Rousseeuw, P. J., 1994. "Asymptotics of Generalized S-Estimators," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 148-177, October.
    6. Hengjian Cui, 2003. "Asymptotic distributions of principal components based on robust dispersions," Biometrika, Biometrika Trust, vol. 90(4), pages 953-966, December.
    7. Graciela Boente, 2002. "Influence functions and outlier detection under the common principal components model: A robust approach," Biometrika, Biometrika Trust, vol. 89(4), pages 861-875, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:95:y:2005:i:1:p:206-226. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.