A Hybrid Framework for Short Term Multi-Step Wind Speed Forecasting Based on Variational Model Decomposition and Convolutional Neural Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Technology.
- Rafal Weron & Florian Ziel, 2018.
"Electricity price forecasting,"
HSC Research Reports
HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
- Katarzyna Maciejowska & Rafal Weron, 2019. "Electricity price forecasting," HSC Research Reports HSC/19/01, Hugo Steinhaus Center, Wroclaw University of Technology.
- Ponta, Linda & Raberto, Marco & Teglio, Andrea & Cincotti, Silvano, 2018.
"An Agent-based Stock-flow Consistent Model of the Sustainable Transition in the Energy Sector,"
Ecological Economics, Elsevier, vol. 145(C), pages 274-300.
- Ponta, Linda & Raberto, Marco & Teglio, Andrea & Cincotti, Silvano, 2016. "An agent-based stock-flow consistent model of the sustainable transition in the energy sector," MPRA Paper 73183, University Library of Munich, Germany.
- Lazić, Lazar & Pejanović, Goran & Živković, Momčilo, 2010. "Wind forecasts for wind power generation using the Eta model," Renewable Energy, Elsevier, vol. 35(6), pages 1236-1243.
- Liu, Hui & Mi, Xiwei & Li, Yanfei, 2018. "An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm," Renewable Energy, Elsevier, vol. 123(C), pages 694-705.
- Jujie Wang & Yanfeng Wang & Yaning Li, 2018. "A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction," Energies, MDPI, vol. 11(2), pages 1-33, February.
- Naik, Jyotirmayee & Bisoi, Ranjeeta & Dash, P.K., 2018. "Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression," Renewable Energy, Elsevier, vol. 129(PA), pages 357-383.
- Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
- Cadenas, Erasmo & Rivera, Wilfrido, 2007. "Wind speed forecasting in the South Coast of Oaxaca, México," Renewable Energy, Elsevier, vol. 32(12), pages 2116-2128.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hsien-Ming Chou, 2024. "Analyzing the Impact of COVID-19 on Short-Term Investment Behavior through Stochastic Oscillator Indicators," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(5), pages 1-6.
- Zhiyan Zhang & Aobo Deng & Zhiwen Wang & Jianyong Li & Hailiang Zhao & Xiaoliang Yang, 2024. "Wind Power Prediction Based on EMD-KPCA-BiLSTM-ATT Model," Energies, MDPI, vol. 17(11), pages 1-15, May.
- Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
- Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
- Calado, Goncalo & Castro, Rui & Pires, A.J. & Marques, Miguel J., 2024. "Assessment of hydrogen-based solutions associated to offshore wind farms: The case of the Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
- Xiaoyu Shi & Xuewen Lei & Qiang Huang & Shengzhi Huang & Kun Ren & Yuanyuan Hu, 2018. "Hourly Day-Ahead Wind Power Prediction Using the Hybrid Model of Variational Model Decomposition and Long Short-Term Memory," Energies, MDPI, vol. 11(11), pages 1-20, November.
- Honghai Niu & Yu Yang & Lingchao Zeng & Yiguo Li, 2021. "ELM-QR-Based Nonparametric Probabilistic Prediction Method for Wind Power," Energies, MDPI, vol. 14(3), pages 1-15, January.
- Hanifi, Shahram & Cammarono, Andrea & Zare-Behtash, Hossein, 2024. "Advanced hyperparameter optimization of deep learning models for wind power prediction," Renewable Energy, Elsevier, vol. 221(C).
- Zou, Yingchao & Yu, Lean & Tso, Geoffrey K.F. & He, Kaijian, 2020. "Risk forecasting in the crude oil market: A multiscale Convolutional Neural Network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
- Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
- Feihu Hu & Xuan Feng & Hui Cao, 2018. "A Short-Term Decision Model for Electricity Retailers: Electricity Procurement and Time-of-Use Pricing," Energies, MDPI, vol. 11(12), pages 1-18, November.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Uniejewski, Bartosz & Maciejowska, Katarzyna, 2023.
"LASSO principal component averaging: A fully automated approach for point forecast pooling,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1839-1852.
- Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
- Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
- Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
- Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
- Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018.
"Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting,"
Energies, MDPI, vol. 11(9), pages 1-20, September.
- Grzegorz Marcjasz & Tomasz Serafin & Rafal Weron, 2018. "Selection of calibration windows for day-ahead electricity price forecasting," HSC Research Reports HSC/18/06, Hugo Steinhaus Center, Wroclaw University of Technology.
- Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
- Uniejewski, Bartosz & Weron, Rafał, 2021.
"Regularized quantile regression averaging for probabilistic electricity price forecasting,"
Energy Economics, Elsevier, vol. 95(C).
- Bartosz Uniejewski & Rafal Weron, 2019. "Regularized Quantile Regression Averaging for probabilistic electricity price forecasting," HSC Research Reports HSC/19/04, Hugo Steinhaus Center, Wroclaw University of Technology.
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
- Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
- Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019.
"Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting,"
Energies, MDPI, vol. 12(13), pages 1-12, July.
- Tomasz Serafin & Bartosz Uniejewski & Rafal Weron, 2019. "Averaging predictive distributions across calibration windows for day-ahead electricity price forecasting," WORking papers in Management Science (WORMS) WORMS/19/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology, revised 06 Jul 2019.
- Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
- Zoran Gligorić & Svetlana Štrbac Savić & Aleksandra Grujić & Milanka Negovanović & Omer Musić, 2018. "Short-Term Electricity Price Forecasting Model Using Interval-Valued Autoregressive Process," Energies, MDPI, vol. 11(7), pages 1-17, July.
- Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
- Kath, Christopher & Ziel, Florian, 2021. "Conformal prediction interval estimation and applications to day-ahead and intraday power markets," International Journal of Forecasting, Elsevier, vol. 37(2), pages 777-799.
- Smith, Michael Stanley & Shively, Thomas S., 2018.
"Econometric modeling of regional electricity spot prices in the Australian market,"
Energy Economics, Elsevier, vol. 74(C), pages 886-903.
- Michael Stanley Smith & Thomas S. Shively, 2018. "Econometric Modeling of Regional Electricity Spot Prices in the Australian Market," Papers 1804.08218, arXiv.org.
More about this item
Keywords
convolutional neural network; variational model decomposition; multi-step forecasting; wind speed forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2292-:d:166784. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.