IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p701-d489705.html
   My bibliography  Save this article

ELM-QR-Based Nonparametric Probabilistic Prediction Method for Wind Power

Author

Listed:
  • Honghai Niu

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
    Nanjing NARI-RELAYS Electric Co. Ltd., Nanjing 211102, China)

  • Yu Yang

    (Nanjing NARI-RELAYS Electric Co. Ltd., Nanjing 211102, China)

  • Lingchao Zeng

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Yiguo Li

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

Abstract

Wind power has significant randomness. Probabilistic prediction of wind power is necessary to solve the problem of safe and stable power grid dispatching with the integration of large-scale wind power. Therefore, this paper proposes a novel nonparametric probabilistic prediction model for wind power based on extreme learning machine-quantile regression (ELM-QR). Firstly, the ELM-QR models of multiple quantiles are established, and then the new comprehensive index (NCI) is optimized by particle swarm optimization (PSO) to obtain the weighting coefficients corresponding to the lower and upper bounds of the prediction intervals. The final prediction interval is obtained by integrating the outputs of ELM-QR models and the weighting coefficients. Finally, case studies are carried out with the real wind farm operation data, simulation results show that the proposed algorithm can obtain narrower prediction intervals while ensuring high reliability. Through sensitivity analysis and comparison with other algorithms, the effectiveness of the proposed algorithm is further verified.

Suggested Citation

  • Honghai Niu & Yu Yang & Lingchao Zeng & Yiguo Li, 2021. "ELM-QR-Based Nonparametric Probabilistic Prediction Method for Wind Power," Energies, MDPI, vol. 14(3), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:701-:d:489705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shrivastava, Nitin Anand & Lohia, Kunal & Panigrahi, Bijaya Ketan, 2016. "A multiobjective framework for wind speed prediction interval forecasts," Renewable Energy, Elsevier, vol. 87(P2), pages 903-910.
    2. Xiyun Yang & Guo Fu & Yanfeng Zhang & Ning Kang & Feng Gao, 2017. "A Naive Bayesian Wind Power Interval Prediction Approach Based on Rough Set Attribute Reduction and Weight Optimization," Energies, MDPI, vol. 10(11), pages 1-15, November.
    3. Long Cai & Jie Gu & Jinghuan Ma & Zhijian Jin, 2019. "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees," Energies, MDPI, vol. 12(1), pages 1-19, January.
    4. Kisvari, Adam & Lin, Zi & Liu, Xiaolei, 2021. "Wind power forecasting – A data-driven method along with gated recurrent neural network," Renewable Energy, Elsevier, vol. 163(C), pages 1895-1909.
    5. Mohanad S. Al-Musaylh & Ravinesh C. Deo & Yan Li, 2020. "Electrical Energy Demand Forecasting Model Development and Evaluation with Maximum Overlap Discrete Wavelet Transform-Online Sequential Extreme Learning Machines Algorithms," Energies, MDPI, vol. 13(9), pages 1-19, May.
    6. Jianzhong Zhou & Han Liu & Yanhe Xu & Wei Jiang, 2018. "A Hybrid Framework for Short Term Multi-Step Wind Speed Forecasting Based on Variational Model Decomposition and Convolutional Neural Network," Energies, MDPI, vol. 11(9), pages 1-18, August.
    7. He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
    8. Hu, Jianming & Tang, Jingwei & Lin, Yingying, 2020. "A novel wind power probabilistic forecasting approach based on joint quantile regression and multi-objective optimization," Renewable Energy, Elsevier, vol. 149(C), pages 141-164.
    9. Duan, Jiandong & Wang, Peng & Ma, Wentao & Tian, Xuan & Fang, Shuai & Cheng, Yulin & Chang, Ying & Liu, Haofan, 2021. "Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short -term memory neural network," Energy, Elsevier, vol. 214(C).
    10. Mengyue Hu & Zhijian Hu & Jingpeng Yue & Menglin Zhang & Meiyu Hu, 2017. "A Novel Multi-Objective Optimal Approach for Wind Power Interval Prediction," Energies, MDPI, vol. 10(4), pages 1-15, March.
    11. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
    12. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2018. "A Novel and Alternative Approach for Direct and Indirect Wind-Power Prediction Methods," Energies, MDPI, vol. 11(11), pages 1-19, October.
    13. Sameer Al-Dahidi & Osama Ayadi & Jehad Adeeb & Mohammad Alrbai & Bashar R. Qawasmeh, 2018. "Extreme Learning Machines for Solar Photovoltaic Power Predictions," Energies, MDPI, vol. 11(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altaf Hussain Rajpar & Imran Ali & Ahmad E. Eladwi & Mohamed Bashir Ali Bashir, 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review," Energies, MDPI, vol. 14(16), pages 1-23, August.
    2. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    3. Hong-Hai Niu & Yang Zhao & Shang-Shang Wei & Yi-Guo Li, 2021. "A Variable Performance Parameters Temperature–Flowrate Scheduling Model for Integrated Energy Systems," Energies, MDPI, vol. 14(17), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Jiaqing & Zheng, Xiaodong & Pawlak, Mirosław & Mo, Weike & Miśkowicz, Marek, 2021. "Very short-term probabilistic wind power prediction using sparse machine learning and nonparametric density estimation algorithms," Renewable Energy, Elsevier, vol. 177(C), pages 181-192.
    2. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt & Tomasz Gulczyński, 2022. "Advanced Ensemble Methods Using Machine Learning and Deep Learning for One-Day-Ahead Forecasts of Electric Energy Production in Wind Farms," Energies, MDPI, vol. 15(4), pages 1-30, February.
    3. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    4. Yuzgec, Ugur & Dokur, Emrah & Balci, Mehmet, 2024. "A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting," Energy, Elsevier, vol. 300(C).
    5. Li, Chaoshun & Tang, Geng & Xue, Xiaoming & Chen, Xinbiao & Wang, Ruoheng & Zhang, Chu, 2020. "The short-term interval prediction of wind power using the deep learning model with gradient descend optimization," Renewable Energy, Elsevier, vol. 155(C), pages 197-211.
    6. Hanifi, Shahram & Cammarono, Andrea & Zare-Behtash, Hossein, 2024. "Advanced hyperparameter optimization of deep learning models for wind power prediction," Renewable Energy, Elsevier, vol. 221(C).
    7. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    8. Sobolewski, Robert Adam & Tchakorom, Médane & Couturier, Raphaël, 2023. "Gradient boosting-based approach for short- and medium-term wind turbine output power prediction," Renewable Energy, Elsevier, vol. 203(C), pages 142-160.
    9. Huang, Qian & Li, Jinghua & Zhu, Mengshu, 2020. "An improved convolutional neural network with load range discretization for probabilistic load forecasting," Energy, Elsevier, vol. 203(C).
    10. Li, Yanting & Wu, Zhenyu & Su, Yan, 2023. "Adaptive short-term wind power forecasting with concept drifts," Renewable Energy, Elsevier, vol. 217(C).
    11. Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
    12. Upma Singh & Mohammad Rizwan & Hasmat Malik & Fausto Pedro García Márquez, 2022. "Wind Energy Scenario, Success and Initiatives towards Renewable Energy in India—A Review," Energies, MDPI, vol. 15(6), pages 1-39, March.
    13. Paweł Piotrowski & Marcin Kopyt & Dariusz Baczyński & Sylwester Robak & Tomasz Gulczyński, 2021. "Hybrid and Ensemble Methods of Two Days Ahead Forecasts of Electric Energy Production in a Small Wind Turbine," Energies, MDPI, vol. 14(5), pages 1-25, February.
    14. Jing Wan & Jiehui Huang & Zhiyuan Liao & Chunquan Li & Peter X. Liu, 2022. "A Multi-View Ensemble Width-Depth Neural Network for Short-Term Wind Power Forecasting," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
    15. Liu, Xin & Yang, Luoxiao & Zhang, Zijun, 2022. "The attention-assisted ordinary differential equation networks for short-term probabilistic wind power predictions," Applied Energy, Elsevier, vol. 324(C).
    16. He, Yaoyao & Wang, Yun & Wang, Shuo & Yao, Xin, 2022. "A cooperative ensemble method for multistep wind speed probabilistic forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Zifa Liu & Xinyi Li & Haiyan Zhao, 2023. "Short-Term Wind Power Forecasting Based on Feature Analysis and Error Correction," Energies, MDPI, vol. 16(10), pages 1-24, May.
    18. Wang, Lei & He, Yigang, 2022. "M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions," Applied Energy, Elsevier, vol. 324(C).
    19. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
    20. Wang, Jianing & Zhu, Hongqiu & Zhang, Yingjie & Cheng, Fei & Zhou, Can, 2023. "A novel prediction model for wind power based on improved long short-term memory neural network," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:701-:d:489705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.