IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016154.html
   My bibliography  Save this article

Advanced hyperparameter optimization of deep learning models for wind power prediction

Author

Listed:
  • Hanifi, Shahram
  • Cammarono, Andrea
  • Zare-Behtash, Hossein

Abstract

The uncertainty of wind power as the main obstacle of its integration into the power grid can be addressed by an accurate and efficient wind power forecast. Among the various wind power forecasting methods, machine learning (ML) algorithms, are recognized as a powerful wind power forecasting tool, however, their performance is highly dependent on the proper tuning of their hyperparameters. Common hyperparameter tuning methods such as grid search or random search are time-consuming, computationally expensive, and unreliable for complex models such as deep learning neural networks. Therefore, there is an urgent need for automatic methods to discover optimal hyperparameters for higher accuracy and efficiency of prediction models. In this study, a novel investigation is contributed to the field of wind power forecasting by a comprehensive comparison of three advanced techniques – Scikit-opt, Optuna, and Hyperopt – for hyperparameter optimization of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) models, a facet that, to our knowledge, has not been systematically explored in existing literature. The impact of these optimization techniques on the accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean square error (RMSE) of the predictions and the required time to tune the models. The results show that the Optuna algorithm, using a Tree-structured Parzen Estimator (TPE) search method and Expected Improvement (EI) acquisition function, has the best efficiency for both CNN and LSTM models. In terms of accuracy, it is demonstrated that while for the CNN model all the optimization methods achieve similar performances, the LSTM model optimized by the Hyperopt algorithm, based on the annealing search method, results in the highest accuracy. In addition, for the first time in this research, the impact of the random initialization features on the performance of the forecasting models with neural networks is investigated. The proposed structures for deep learning models were examined to determine the most robust structure with the minimal sensitivity to the randomness. What we have discovered from the comparison of advanced hyperparameter optimization methods can be used by researchers to tune the time series-based forecasting models.

Suggested Citation

  • Hanifi, Shahram & Cammarono, Andrea & Zare-Behtash, Hossein, 2024. "Advanced hyperparameter optimization of deep learning models for wind power prediction," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016154
    DOI: 10.1016/j.renene.2023.119700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.